
 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 1 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 2 Dr.Venkateswarulu, Assoc Prof

About the Author
Best-selling author Herbert Schildt has written extensively about
programming for over three decades and is a leading authority on the Java

language. His books have sold millions of copies worldwide and have been

translated into all major foreign languages. He is the author of numerous books

on Java, including Java: A Beginner’s Guide, Herb Schildt’s Java
Programming Cookbook, Introducing JavaFX 8 Programming, and Swing: A

Beginner’s Guide. He has also written extensively about C, C++, and C#.
Although interested in all facets of computing, his primary focus is computer
languages. Schildt holds both graduate and undergraduate degrees from the
University of Illinois. His website is www.HerbSchildt.com.

About the Technical Editor
Dr. Danny Coward has worked on all editions of the Java platform. He led the
definition of Java Servlets into the first version of the Java EE platform and

beyond, web services into the Java ME platform, and the strategy and planning

for Java SE 7. He founded JavaFX technology and, most recently, designed the

largest addition to the Java EE 7 standard, the Java WebSocket API. From
coding in Java, to designing APIs with industry experts, to serving for several

years as an executive to the Java Community Process, he has a uniquely broad
perspective into multiple aspects of Java technology. In addition, he is the

author of two books on Java programming: Java WebSocket Programming and
Java EE: The Big Picture. Most recently, he has been applying his knowledge

of Java to solving problems in the field of robotics. Dr. Coward holds a

bachelor’s, master’s, and doctorate in mathematics from the University of
Oxford.

http://www.herbschildt.com/

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 3 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 4 Dr.Venkateswarulu, Assoc Prof

Copyright © 2019 by McGraw-Hill Education (Publisher). All rights
reserved. Except as permitted under the United States Copyright Act of

1976, no part of this publication may be reproduced or distributed in any

form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

ISBN: 978-1-26-044024-9

MHID: 1-26-044024-9

The material in this eBook also appears in the print version of this title:
ISBN: 978-1-26-044023-2, MHID: 1-26-044023-0.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a

trademark symbol after every occurrence of a trademarked name, we use
names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such

designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts

to use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at

www.mhprofessional.com.

Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. All other trademarks are the property of their respective owners,
and McGraw-Hill Education makes no claim of ownership by the mention
of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been
reproduced herein with the permission of Oracle Corporation and/or its

affiliates.

Information has been obtained by Publisher from sources believed to be
reliable. However, because of the possibility of human or mechanical error
by our sources, Publisher, or others, Publisher does not guarantee to the

http://www.mhprofessional.com/

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 5 Dr.Venkateswarulu, Assoc Prof

accuracy, adequacy, or completeness of any information included in this
work and is not responsible for any errors or omissions or the results
obtained from the use ofsuch information.

Oracle Corporation does not make any representations or warranties as to

the accuracy, adequacy, or completeness of any information contained in

this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors
reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile,

disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the
work or any part of it without McGraw-Hill Education’s prior consent. You
may use the work for your own noncommercial and personal use; any other
use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND
ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO

THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS

TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY

INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK

VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM

ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do
not warrant or guarantee that the functions contained in the work will
meet your requirements or that its operation will be uninterrupted or error
free. Neither McGraw-Hill Education nor its licensors shall be liable to
you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for
any damages resulting therefrom. McGraw-Hill Education has no
responsibility for the content of any information accessed through the

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 6 Dr.Venkateswarulu, Assoc Prof

work. Under no circumstances shall McGraw-Hill Education and/or its
licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages
that result from the use of or inability to use the work, even if any of them
has been advised of the possibility of such damages. This limitation of
liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

Contents at a Glance

Part I The Java Language

1 The History and Evolution of Java

2 An Overview of Java

3 Data Types, Variables, and Arrays

4 Operators

5 Control Statements

6 Introducing Classes

7 A Closer Look at Methods and Classes

8 Inheritance

9 Packages and Interfaces

10 Exception Handling

11 Multithreaded Programming

12 Enumerations, Autoboxing, and Annotations

13 I/O, Try-with-Resources, and Other Topics

14 Generics

15 Lambda Expressions

16 Modules

Part II The Java Library

17 String Handling

18 Exploring java.lang

19 java.util Part 1: The Collections Framework

20 java.util Part 2: More Utility Classes

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 7 Dr.Venkateswarulu, Assoc Prof

21 Input/Output: Exploring java.io

22 Exploring NIO

23 Networking

24 Event Handling

25 Introducing the AWT: Working with Windows, Graphics, and
Textsing AWT Controls, Layout Managers, and Menus

26 Images

27 The Concurrency Utilities

28 The Stream API

29 Regular Expressions and Other Packages

Part III Introducing GUI Programming with Swing

30 Introducing Swing

31 Exploring Swing

32 Introducing Swing Menus

Part IV Applying Java

33 Java Beans

34 Introducing Servlets

Part V Appendixes

A Using Java’s Documentation Comments

B Introducing JShell

C Compile and Run Simple Single-File Programs in One Step

Index

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 8 Dr.Venkateswarulu, Assoc Prof

Contents

Preface

Part I The Java Language

Chapter 1 The History and Evolution of Java

Java’s Lineage

The Birth of Modern Programming: C

C++: The Next Step

The Stage Is Set for Java

The Creation of Java

The C# Connection

How Java Impacted the Internet

Java Applets

Security

Portability

Java’s Magic: The Bytecode

Moving Beyond Applets

A Faster Release Schedule

Servlets: Java on the Server Side

The Java Buzzwords

Simple

Object-Oriented

Robust

Multithreaded

Architecture-Neutral

Interpreted and High Performance

Distributed

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 9 Dr.Venkateswarulu, Assoc Prof

Dynamic

The Evolution of Java

A Culture of Innovation

Chapter 2 An Overview of Java

Object-Oriented Programming

Two Paradigms Abstraction

The Three OOP Principles A

First Simple Program

Entering the Program

Compiling the Program

A Closer Look at the First Sample Program A

Second Short Program

Two Control Statements

The if Statement

The for Loop Using

Blocks of Code

Lexical Issues

Whitespace

Identifiers Literals

Comments

Separators

The Java Keywords The

Java Class Libraries

Chapter 3 Data Types, Variables, and Arrays

Java Is a Strongly Typed Language

The Primitive Types

Integers

byte

short

int long

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 10 Dr.Venkateswarulu, Assoc Prof

Floating-Point Types float

double

Characters

Booleans

A Closer Look at Literals

Integer Literals

Floating-Point Literals

Boolean Literals

Character Literals

String Literals

Variables

Declaring a Variable

Dynamic Initialization

The Scope and Lifetime of Variables

Type Conversion and Casting

Java’s Automatic Conversions

Casting Incompatible Types

Automatic Type Promotion in Expressions The

Type Promotion Rules

Arrays

One-Dimensional Arrays

Multidimensional Arrays

Alternative Array Declaration Syntax Introducing

Type Inference with Local Variables

Some var Restrictions

A Few Words About Strings

Chapter 4 Operators

Arithmetic Operators

The Basic Arithmetic Operators

The Modulus Operator

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 11 Dr.Venkateswarulu, Assoc Prof

Arithmetic Compound Assignment Operators

Increment and Decrement

The Bitwise Operators

The Bitwise Logical Operators

The Left Shift

The Right Shift

The Unsigned Right Shift

Bitwise Operator Compound Assignments

Relational Operators

Boolean Logical Operators

Short-Circuit Logical Operators

The Assignment Operator

The ? Operator

Operator Precedence

Using Parentheses

Chapter 5 Control Statements

Java’s Selection Statements if

switch

Iteration Statements while

do-while for

The For-Each Version of the for Loop

Local Variable Type Inference in a for Loop

Nested Loops

Jump Statements

Using break Using

continue

Chapter 6 Introducing Classes

Class Fundamentals

The General Form of a Class A

Simple Class

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 12 Dr.Venkateswarulu, Assoc Prof

Declaring Objects

A Closer Look at new

Assigning Object Reference Variables

Introducing Methods

Adding a Method to the Box Class

Returning a Value

Adding a Method That Takes Parameters

Constructors

Parameterized Constructors

The this Keyword

Instance Variable Hiding

Garbage Collection

A Stack Class

Chapter 7 A Closer Look at Methods and Classes

Overloading Methods

Overloading Constructors

Using Objects as Parameters

A Closer Look at Argument Passing

Returning Objects

Recursion

Introducing Access Control

Understanding static

Introducing final

Arrays Revisited

Introducing Nested and Inner Classes

Exploring the String Class

Using Command-Line Arguments

Varargs: Variable-Length Arguments

Overloading Vararg Methods Varargs

and Ambiguity

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 13 Dr.Venkateswarulu, Assoc Prof

Local Variable Type Inference with Reference Types

Chapter 8 Inheritance

Inheritance Basics

Member Access and Inheritance

A More Practical Example

A Superclass Variable Can Reference a Subclass Object

Using super

Using super to Call Superclass Constructors

A Second Use for super

Creating a Multilevel Hierarchy

When Constructors Are Executed

Method Overriding

Dynamic Method Dispatch Why

Overridden Methods?

Applying Method Overriding

Using Abstract Classes

Using final with Inheritance

Using final to Prevent Overriding

Using final to Prevent Inheritance

Local Variable Type Inference and Inheritance

The Object Class

Chapter 9 Packages and Interfaces

Packages

Defining a Package

Finding Packages and CLASSPATH A

Short Package Example

Packages and Member Access

An Access Example

Importing Packages

Interfaces

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 14 Dr.Venkateswarulu, Assoc Prof

Defining an Interface

Implementing Interfaces

Nested Interfaces

Applying Interfaces

Variables in Interfaces

Interfaces Can Be Extended

Default Interface Methods

Default Method Fundamentals

A More Practical Example

Multiple Inheritance Issues

Use static Methods in an Interface

Private Interface Methods

Final Thoughts on Packages and Interfaces

Chapter 10 Exception Handling

Exception-Handling Fundamentals

Exception Types

Uncaught Exceptions

Using try and catch

Displaying a Description of an Exception

Multiple catch Clauses

Nested try Statements

throw

throws

finally

Java’s Built-in Exceptions

Creating Your Own Exception Subclasses

Chained Exceptions

Three Additional Exception Features

Using Exceptions

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 15 Dr.Venkateswarulu, Assoc Prof

Chapter 11 Multithreaded Programming

The Java Thread Model

Thread Priorities

Synchronization

Messaging

The Thread Class and the Runnable

Interface The Main Thread

Creating a Thread

Implementing

Runnable Extending

Thread Choosing an

Approach

Creating Multiple Threads

Using isAlive() and join()

Thread Priorities

Synchronization

Using Synchronized Methods

The synchronized Statement

Interthread

Communication

Deadlock

Suspending, Resuming, and Stopping Threads

Obtaining a Thread’s State

Using a Factory Method to Create and Start a Thread

Using Multithreading

Chapter 12 Enumerations, Autoboxing, and Annotations

Enumerations

Enumeration Fundamentals

The values() and valueOf()

Methods Java Enumerations Are

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 16 Dr.Venkateswarulu, Assoc Prof

Class Types Enumerations Inherit

Enum

Another Enumeration

Example Type Wrappers

Character

Boolean

The Numeric Type Wrappers

Autoboxing

Autoboxing and Methods

Autoboxing/Unboxing Occurs in

Expressions

Autoboxing/Unboxing Boolean and Character Values

Autoboxing/Unboxing Helps Prevent Errors

A Word of Warning

Annotations

Annotation Basics

Specifying a Retention Policy

Obtaining Annotations at Run Time by Use of

Reflection The AnnotatedElement Interface

Using Default Values

Marker Annotations

Single-Member Annotations

The Built-In Annotations

Type Annotations

Repeating Annotations

Some Restrictions

Chapter 13 I/O, Try-with-Resources, and Other Topics

I/O Basics

Streams

Byte Streams and Character

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 17 Dr.Venkateswarulu, Assoc Prof

Streams The Predefined Streams

Reading Console

Input Reading

Characters

Reading Strings

Writing Console Output

The PrintWriter Class

Reading and Writing Files

Automatically Closing a

File

The transient and volatile Modifiers

Using instanceof

strictfp

Native Methods

Using assert

Assertion Enabling and Disabling Options

Static Import

Invoking Overloaded Constructors Through this(

) A Word About Compact API Profiles

Chapter 14 Generics

What Are Generics?

A Simple Generics Example

Generics Work Only with Reference Types

Generic Types Differ Based on Their Type Arguments

How Generics Improve Type Safety

A Generic Class with Two Type

Parameters The General Form of a

Generic Class Bounded Types

Using Wildcard

Arguments Bounded

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 18 Dr.Venkateswarulu, Assoc Prof

Wildcards Creating a

Generic Method Generic

Constructors

Generic Interfaces

Raw Types and Legacy

Code Generic Class

Hierarchies

Using a Generic

Superclass Generic

Subclass

Run-Time Type Comparisons Within a Generic

Hierarchy Casting

Overriding Methods in a Generic

Class Type Inference with Generics

Local Variable Type Inference and Generics

Erasure

Bridge Methods

Ambiguity Errors

Some Generic Restrictions

Type Parameters Can’t Be

Instantiated Restrictions on Static

Members Generic Array

Restrictions

Generic Exception Restriction

Chapter 15 Lambda Expressions

Introducing Lambda Expressions

Lambda Expression Fundamentals

Functional Interfaces

Some Lambda Expression

Examples Block Lambda Expressions

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 19 Dr.Venkateswarulu, Assoc Prof

Generic Functional Interfaces

Passing Lambda Expressions as

Arguments Lambda Expressions and

Exceptions Lambda Expressions and

Variable Capture Method References

Method References to static Methods

Method References to Instance

Methods Method References with

Generics

Constructor References

Predefined Functional

Interfaces

Chapter 16 Modules

Module Basics

A Simple Module Example

Compile and Run the First Module Example

A Closer Look at requires and

exports java.base and the Platform

Modules Legacy Code and the

Unnamed Module Exporting to a

Specific Module

Using requires

transitive Use Services

Service and Service Provider

Basics The Service-Based

Keywords

A Module-Based Service Example

Module Graphs

Three Specialized Module Features

Open Modules

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 20 Dr.Venkateswarulu, Assoc Prof

The opens Statement

requires static

Introducing jlink and Module JAR Files

Linking Files in an Exploded

Directory Linking Modular JAR

Files

JMOD Files

A Brief Word About Layers and Automatic Modules

Final Thoughts on Modules

Part II The Java Library

Chapter 17 String Handling

The String Constructors

String Length

Special String Operations

String Literals

String Concatenation

String Concatenation with Other Data

Types String Conversion and toString()

Character Extraction

charAt()

getChars()

getBytes()

toCharArray()

String Comparison

equals() and equalsIgnoreCase()

regionMatches()

startsWith() and endsWith()

equals() Versus ==

compareTo()

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 21 Dr.Venkateswarulu, Assoc Prof

Searching Strings

Modifying a String

substring()

concat()

replace()

trim() and strip()

Data Conversion Using valueOf()

Changing the Case of Characters Within a String

Joining Strings

Additional String Methods

StringBuffer

StringBuffer Constructors

length() and capacity()

ensureCapacity()

setLength()

charAt() and setCharAt()

getChars()

append()

insert()

reverse()

delete() and deleteCharAt()

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 22 Dr.Venkateswarulu, Assoc Prof

replace()

substring()

Additional StringBuffer Methods

StringBuilder

Chapter 18 Exploring java.lang

Primitive Type Wrappers

Number

Double and Float

Understanding isInfinite() and isNaN()

Byte, Short, Integer, and Long

Character

Additions to Character for Unicode Code Point Support

Boolean

Void

Process

Runtime

Memory Management

Executing Other Programs

Runtime.Version

ProcessBuilder

System

Using currentTimeMillis() to Time Program Execution

Using arraycopy()

Environment Properties

System.Logger and System.LoggerFinder

Object

Using clone() and the Cloneable Interface

Class

ClassLoader

Math

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 23 Dr.Venkateswarulu, Assoc Prof

Trigonometric Functions

Exponential Functions

Rounding Functions

Miscellaneous Math Methods

StrictMath Compiler

Thread, ThreadGroup, and Runnable The

Runnable Interface

Thread

ThreadGroup

ThreadLocal and InheritableThreadLocal Package

Module ModuleLayer

RuntimePermission

Throwable

SecurityManager

StackTraceElement

StackWalker and StackWalker.StackFrame Enum

ClassValue

The CharSequence Interface

The Comparable Interface The

Appendable Interface The

Iterable Interface

The Readable Interface

The AutoCloseable Interface

The Thread.UncaughtExceptionHandler Interface The

java.lang Subpackages

java.lang.annotation

java.lang.instrument

java.lang.invoke

java.lang.management

java.lang.module

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 24 Dr.Venkateswarulu, Assoc Prof

java.lang.ref

java.lang.reflect

Chapter 19 java.util Part 1: The Collections Framework

Collections Overview

The Collection Interfaces

The Collection Interface

The List Interface

The Set Interface

The SortedSet Interface

The NavigableSet Interface

The Queue Interface

The Deque Interface

The Collection Classes

The ArrayList Class

The LinkedList Class

The HashSet Class

The LinkedHashSet Class

The TreeSet Class

The PriorityQueue Class

The ArrayDeque Class

The EnumSet Class

Accessing a Collection via an Iterator

Using an Iterator

The For-Each Alternative to Iterators

Spliterators

Storing User-Defined Classes in Collections

The RandomAccess Interface

Working with Maps

The Map Interfaces

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 25 Dr.Venkateswarulu, Assoc Prof

The Map Classes

Comparators

Using a Comparator

The Collection

Algorithms Arrays

The Legacy Classes and

Interfaces The Enumeration

Interface Vector

Stack

Dictionary

Hashtable

Properties

Using store() and load()

Parting Thoughts on Collections

Chapter 20 java.util Part 2: More Utility Classes

StringTokenizer

BitSet

Optional, OptionalDouble, OptionalInt, and OptionalLong

Date

Calendar

GregorianCalendar

TimeZone

SimpleTimeZone

Locale

Random

Timer and TimerTask

Currency

Formatter

The Formatter

Constructors The

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 26 Dr.Venkateswarulu, Assoc Prof

Formatter Methods

Formatting Basics

Formatting Strings and Characters

Formatting Numbers

Formatting Time and Date

The %n and %% Specifiers

Specifying a Minimum Field Width

Specifying Precision

Using the Format Flags

Justifying Output

The Space, +, 0, and (Flags

The Comma Flag

The # Flag

The Uppercase Option

Using an Argument Index

Closing a Formatter

The Java printf() Connection

Scanner

The Scanner Constructors

Scanning Basics

Some Scanner Examples

Setting Delimiters

Other Scanner Features

The ResourceBundle, ListResourceBundle, and
PropertyResourceBundle Classes

Miscellaneous Utility Classes and Interfaces

The java.util Subpackages

java.util.concurrent, java.util.concurrent.atomic, and
java.util.concurrent.locks

java.util.function

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 27 Dr.Venkateswarulu, Assoc Prof

java.util.jar

java.util.logging

java.util.prefs

java.util.regex

java.util.spi

java.util.stream

java.util.zip

Chapter 21 Input/Output: Exploring

java.io The I/O Classes and

Interfaces File

Directories

Using FilenameFilter

The listFiles() Alternative

Creating Directories

The AutoCloseable, Closeable, and Flushable

Interfaces I/O Exceptions

Two Ways to Close a

Stream The Stream

Classes

The Byte Streams

InputStream

OutputStream

FileInputStream

FileOutputStream

ByteArrayInputStream

ByteArrayOutputStream

Filtered Byte Streams

Buffered Byte Streams

SequenceInputStream

PrintStream

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 28 Dr.Venkateswarulu, Assoc Prof

DataOutputStream and DataInputStream

RandomAccessFile

The Character Streams

Reader

Writer

FileReader

FileWriter

CharArrayRead

er

CharArrayWri

ter

BufferedReade

r

BufferedWriter

PushbackRead

er PrintWriter

The Console Class

Serialization

Serializable

Externalizable

ObjectOutput

ObjectOutputStream

ObjectInput

ObjectInputStream

A Serialization

Example Stream Benefits

Chapter 22 Exploring NIO

The NIO Classes

NIO

Fundamentals

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 29 Dr.Venkateswarulu, Assoc Prof

Buffer

s

Chann

els

Charsets and Selectors

Enhancements Added by NIO.2

The Path

Interface The

Files Class The

Paths Class

The File Attribute Interfaces

The FileSystem, FileSystems, and FileStore Classes

Using the NIO System

Use NIO for Channel-Based

I/O Use NIO for Stream-

Based I/O

Use NIO for Path and File System Operations

Chapter 23 Networking

Networking Basics

The java.net Networking Classes and

Interfaces InetAddress

Factory Methods

Instance Methods

Inet4Address and Inet6Address

TCP/IP Client Sockets

URL

URLConnection

HttpURLConnectio

n The URI Class

Cookies

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 30 Dr.Venkateswarulu, Assoc Prof

TCP/IP Server Sockets

Datagrams

DatagramSocket

DatagramPacket

A Datagram Example

Introducing java.net.http

Three Key Elements

A Simple HTTP Client Example

Things to Explore in java.net.http

Chapter 24 Event Handling

Two Event Handling

Mechanisms The Delegation

Event Model

Events

Event Sources

Event

Listeners

Event Classes

The ActionEvent Class

The AdjustmentEvent Class

The ComponentEvent Class

The ContainerEvent Class

The FocusEvent Class

The InputEvent Class

The ItemEvent Class

The KeyEvent Class

The MouseEvent Class

The MouseWheelEvent Class

The TextEvent Class

The WindowEvent Class

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 31 Dr.Venkateswarulu, Assoc Prof

Sources of Events

Event Listener Interfaces

The ActionListener Interface

The AdjustmentListener Interface

The ComponentListener Interface

The ContainerListener Interface

The FocusListener Interface

The ItemListener Interface

The KeyListener Interface

The MouseListener Interface

The MouseMotionListener Interface

The MouseWheelListener Interface

The TextListener Interface

The WindowFocusListener Interface

The WindowListener Interface

Using the Delegation Event Model

Some Key AWT GUI Concepts

Handling Mouse Events

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 32 Dr.Venkateswarulu, Assoc Prof

Handling Keyboard Events

Adapter Classes

Inner Classes

Anonymous Inner Classes

Chapter 25 Introducing the AWT: Working with Windows, Graphics,
and Text

AWT Classes

Window Fundamentals

Component

Container

Panel

Window

Frame

Canvas

Working with Frame Windows

Setting the Window’s Dimensions

Hiding and Showing a Window

Setting a Window’s Title

Closing a Frame Window

The paint() Method

Displaying a String

Setting the Foreground and Background Colors

Requesting Repainting

Creating a Frame-Based Application

Introducing Graphics

Drawing Lines

Drawing Rectangles

Drawing Ellipses and Circles

Drawing Arcs

Drawing Polygons

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 33 Dr.Venkateswarulu, Assoc Prof

Demonstrating the Drawing Methods

Sizing Graphics

Working with Color

Color Methods

Setting the Current Graphics Color

A Color Demonstration Program

Setting the Paint Mode

Working with Fonts

Determining the Available Fonts

Creating and Selecting a Font

Obtaining Font Information

Managing Text Output Using FontMetrics

Chapter 26 Using AWT Controls, Layout Managers, and Menus

AWT Control Fundamentals

Adding and Removing Controls

Responding to Controls

The HeadlessException

Labels

Using Buttons

Handling Buttons

Applying Check Boxes

Handling Check Boxes

CheckboxGroup

Choice Controls

Handling Choice Lists

Using Lists

Handling Lists

Managing Scroll Bars

Handling Scroll Bars

Using a TextField

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 34 Dr.Venkateswarulu, Assoc Prof

Handling a TextField

Using a TextArea

Understanding Layout Managers

FlowLayout

BorderLayout

Using Insets

GridLayout

CardLayout

GridBagLayout

Menu Bars and Menus

Dialog Boxes

A Word About Overriding paint()

Chapter 27 Images

File Formats

Image Fundamentals: Creating, Loading, and Displaying

Creating an Image Object

Loading an Image

Displaying an Image

Double Buffering

ImageProducer

MemoryImageSource

ImageConsumer

PixelGrabber

ImageFilter

CropImageFilter

RGBImageFilter

Additional Imaging Classes

Chapter 28 The Concurrency Utilities

The Concurrent API Packages

java.util.concurrent

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 35 Dr.Venkateswarulu, Assoc Prof

java.util.concurrent.atomic

java.util.concurrent.locks

Using Synchronization Objects

Semaphore

CountDownLatch

CyclicBarrier

Exchanger

Phaser

Using an Executor

A Simple Executor Example

Using Callable and Future

The TimeUnit

Enumeration The

Concurrent Collections

Locks

Atomic Operations

Parallel Programming via the Fork/Join Framework

The Main Fork/Join Classes

The Divide-and-Conquer Strategy

A Simple First Fork/Join Example

Understanding the Impact of the Level of Parallelism

An Example that Uses RecursiveTask<V>

Executing a Task Asynchronously

Cancelling a Task

Determining a Task’s Completion Status

Restarting a Task

Things to Explore

Some Fork/Join Tips

The Concurrency Utilities Versus Java’s Traditional Approach

Chapter 29 The Stream API

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 36 Dr.Venkateswarulu, Assoc Prof

Stream Basics

Stream

Interfaces

How to Obtain a Stream

A Simple Stream Example

Reduction Operations

Using Parallel Streams

Mapping

Collecting

Iterators and Streams

Use an Iterator with a Stream

Use Spliterator

More to Explore in the Stream API

Chapter 30 Regular Expressions and Other Packages

Regular Expression Processing

Pattern

Matcher

Regular Expression Syntax

Demonstrating Pattern Matching

Two Pattern-Matching Options

Exploring Regular Expressions

Reflection

Remote Method Invocation (RMI)

A Simple Client/Server Application Using RMI

Formatting Date and Time with java.text

DateFormat Class

SimpleDateFormat Class

The java.time Time and Date API

Time and Date Fundamentals

Formatting Date and Time

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 37 Dr.Venkateswarulu, Assoc Prof

Parsing Date and Time Strings

Other Things to Explore in java.time

Part III Introducing GUI Programming with Swing

Chapter 31 Introducing Swing

The Origins of Swing

Swing Is Built on the

AWT

Two Key Swing Features

Swing Components Are Lightweight

Swing Supports a Pluggable Look and Feel

The MVC Connection

Components and Containers

Components

Containers

The Top-Level Container Panes

The Swing Packages

A Simple Swing Application

Event Handling

Painting in Swing

Painting Fundamentals

Compute the Paintable Area

A Paint Example

Chapter 32 Exploring Swing

JLabel and ImageIcon

JTextField

The Swing Buttons

JButton

JToggleButton

Check Boxes

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 38 Dr.Venkateswarulu, Assoc Prof

Radio Buttons

JTabbedPane

JScrollPane

JList

JComboBox

Trees

JTable

Chapter 33 Introducing Swing Menus

Menu Basics

An Overview of JMenuBar, JMenu, and JMenuItem

JMenuBar

JMenu

JMenuItem

Create a Main Menu

Add Mnemonics and Accelerators to Menu Items

Add Images and Tooltips to Menu Items

Use JRadioButtonMenuItem and JCheckBoxMenuItem

Create a Popup Menu

Create a Toolbar

Use Actions

Put the Entire MenuDemo Program Together

Continuing Your Exploration of Swing

Part IV Applying Java

Chapter 34 Java Beans

What Is a Java Bean?

Advantages of Beans

Introspection

Design Patterns for Properties

Design Patterns for Events

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 39 Dr.Venkateswarulu, Assoc Prof

Methods and Design Patterns

Using the BeanInfo Interface

Bound and Constrained Properties

Persistence

Customizers

The JavaBeans API

Introspector

PropertyDescriptor

EventSetDescriptor

MethodDescriptor

A Bean Example

Chapter 35 Introducing Servlets

Background

The Life Cycle of a Servlet

Servlet Development Options

Using Tomcat

A Simple Servlet

Create and Compile the Servlet Source Code

Start Tomcat

Start a Web Browser and Request the Servlet

The Servlet API

The javax.servlet Package

The Servlet Interface

The ServletConfig Interface

The ServletContext Interface

The ServletRequest Interface

The ServletResponse Interface

The GenericServlet Class

The ServletInputStream Class

The ServletOutputStream Class

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 40 Dr.Venkateswarulu, Assoc Prof

The Servlet Exception Classes

Reading Servlet Parameters

The javax.servlet.http Package

The HttpServletRequest Interface

The HttpServletResponse Interface

The HttpSession Interface

The Cookie Class

The HttpServlet Class

Handling HTTP Requests and Responses

Handling HTTP GET Requests

Handling HTTP POST Requests

Using Cookies

Session Tracking

Part V Appendixes

Appendix A Using Java’s Documentation Comments

The javadoc Tags

@author

{@code}

@deprecated

{@docRoot}

@exception

@hidden

{@index}

{@inheritDoc}

{@link}

{@linkplain}

{@literal}

@param

@provides

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 41 Dr.Venkateswarulu, Assoc Prof

@return

@see

@serial

@serialData

@serialField

@since

{@summary}

@throws

@uses

{@value}

@version

The General Form of a Documentation Comment

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 42 Dr.Venkateswarulu, Assoc Prof

What javadoc Outputs

An Example that Uses Documentation Comments

Appendix B Introducing JShell

JShell Basics

List, Edit, and Rerun Code

Add a Method

Create a Class

Use an Interface

Evaluate Expressions and Use Built-in Variables

Importing Packages

Exceptions

Some More JShell Commands

Exploring JShell Further

Appendix C Compile and Run Simple Single-File Programs in One Step

Index

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 43 Dr.Venkateswarulu, Assoc Prof

J

Preface

ava is one of the world’s most important and widely used computer
languages. Furthermore, it has held that distinction for many years. Unlike

some other computer languages whose influence has waned with the

passage of time, Java’s has grown stronger. Java leapt to the forefront of

Internet programming with its first release. Each subsequent version has
solidified that position. Today, it is still the first and best choice for developing

web-based applications. It is also a powerful, general-purpose programming

language suitable for a wide variety of purposes. Simply put: much of the
modern world runs on Java code. Java really is that important.

A key reason for Java’s success is its agility. Since its original 1.0 release,
Java has continually adapted to changes in the programming environment and

to changes in the way that programmers program. Most importantly, it has not
just followed the trends, it has helped create them. Java’s ability to
accommodate the fast rate of change in the computing world is a crucial part

of why it has been and continues to be so successful.

Since this book was first published in 1996, it has gone through several
editions, each reflecting the ongoing evolution of Java. This is the eleventh
edition, and it has been updated for Java SE 11 (JDK 11). As a result, this

edition of the book contains a substantial amount of new material, updates, and
changes. Of special interest are the discussions of two key features that have
been added to Java since the previous edition of this book. The first is local
variable type inference because it streamlines some types of local variable
declarations. To support local variable type inference, the context-sensitive,
reserved type name var has been added to the language. The second key new

Java feature is the reworking of the version number to reflect what is expected
to be a faster release cycle, which started with JDK 10. As explained in Chapter
1, Java feature releases are now anticipated to take place every six months.
This is important because it is now possible for new features to be added to
Java at a more rapid pace than in the past.

Although introduced in the previous edition of this book, there are two
recently added Java features that are still having a strong impact on Java
programmers. The first is modules, which enable you to specify the

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 44 Dr.Venkateswarulu, Assoc Prof

relationships and dependencies of the code that comprises an application. The

addition of modules by JDK 9 represents one of the most profound changes

ever made to the Java language. For example, it resulted in the addition of 10

context-sensitive keywords. Modules also significantly impacted the Java API
library because its packages are now organized into modules. Furthermore, to
support modules, new tools have been added, existing tools have been updated,

and a new file format has been defined. Because of their importance, the
entirety of Chapter 16 is devoted to modules. The second recently added feature
is JShell. JShell is a tool that offers an interactive environment in which it is
easy to experiment with code snippets without having to write an entire

program. Both beginners and experienced professionals will find it quite useful.
An introduction to JShell is found in Appendix B.

A Book for All Programmers
This book is for all programmers, whether you are a novice or an experienced
pro. The beginner will find its carefully paced discussions and many examples

especially helpful. Its in-depth coverage of Java’s more advanced features and
libraries will appeal to the pro. For both, it offers a lasting resource and handy
reference.

What’s Inside
This book is a comprehensive guide to the Java language, describing its syntax,

keywords, and fundamental programming principles. Significant portions of the

Java API library are also examined. The book is divided into four parts, each
focusing on a different aspect of the Java programming environment.

Part I presents an in-depth tutorial of the Java language. It begins with the
basics, including such things as data types, operators, control statements, and
classes. It then moves on to inheritance, packages, interfaces, exception
handling, and multithreading. Next, it describes annotations, enumerations,
autoboxing, generics, and lambda expressions. I/O is also introduced. The final
chapter in Part I covers modules.

Part II examines key aspects of Java’s standard API library. Topics include
strings, I/O, networking, the standard utilities, the Collections Framework, the
AWT, event handling, imaging, concurrency (including the Fork/Join

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 45 Dr.Venkateswarulu, Assoc Prof

Framework), regular expressions, and the stream library.

Part III offers three chapters that introduce Swing.

Part IV contains two chapters that show examples of Java in action. The first

discusses Java Beans. The second presents an introduction to servlets.

Special Thanks
I want to give special thanks to Patrick Naughton, Joe O’Neil, and Danny
Coward.

Patrick Naughton was one of the creators of the Java language. He also
helped write the first edition of this book. For example, among many other
contributions, much of the material in Chapters 21, 23, and 27 was initially
provided by Patrick. His insights, expertise, and energy contributed greatly to

the success of that book.

During the preparation of the second and third editions of this book, Joe
O’Neil provided initial drafts for the material now found in Chapters 30, 32, 34,
and 35 of this edition. Joe helped on several of my books, and his input has
always been top-notch.

Danny Coward is the technical editor for this edition of the book. Danny has
worked on several of my books, and his advice, insights, and suggestions have
always been of great value and much appreciated.

HERBERT SCHILDT

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 46 Dr.Venkateswarulu, Assoc Prof

For Further Study
Java: The Complete Reference is your gateway to the Herb Schildt series of
Java programming books. Here are others that you will find of interest:

Herb Schildt’s Java Programming Cookbook

Java: A Beginner’s Guide

Introducing JavaFX 8 Programming

Swing: A Beginner’s Guide

The Art of Java

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 47 Dr.Venkateswarulu, Assoc Prof

PART

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 48 Dr.Venkateswarulu, Assoc Prof

The Java Language

CHAPTER 1

The History and Evolution of Java

CHAPTER 2

An Overview of Java

CHAPTER 3

Data Types, Variables, and Arrays

CHAPTER 4

Operators

CHAPTER 5

Control Statements

CHAPTER 6

Introducing Classes

CHAPTER 7

A Closer Look at Methods and Classes

CHAPTER 8

Inheritance

CHAPTER 9

Packages and Interfaces

CHAPTER 10

Exception Handling

CHAPTER 11

Multithreaded Programming

CHAPTER 12

Enumerations, Autoboxing, and Annotations

CHAPTER 13

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 49 Dr.Venkateswarulu, Assoc Prof

I/O, Try-with-Resources, and Other Topics

CHAPTER 14

Generics

CHAPTER 15

Lambda Expressions

CHAPTER 16

Modules

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 50 Dr.Venkateswarulu, Assoc Prof

CHAPTER

The History and Evolution of Java

To fully understand Java, one must understand the reasons behind its creation,

the forces that shaped it, and the legacy that it inherits. Like the successful

computer languages that came before, Java is a blend of the best elements of its
rich heritage combined with the innovative concepts required by its unique
mission. While the remaining chapters of this book describe the practical

aspects of Java—including its syntax, key libraries, and applications—this
chapter explains how and why Java came about, what makes it so important,
and how it has evolved over the years.

Although Java has become inseparably linked with the online environment
of the Internet, it is important to remember that Java is first and foremost a
programming language. Computer language innovation and development occur
for two fundamental reasons:

• To adapt to changing environments and uses

• To implement refinements and improvements in the art of programming

As you will see, the development of Java was driven by both elements in
nearly equal measure.

Java’s Lineage
Java is related to C++, which is a direct descendant of C. Much of the character
of Java is inherited from these two languages. From C, Java derives its syntax.
Many of Java’s object-oriented features were influenced by C++. In fact,
several of Java’s defining characteristics come from—or are responses to—its
predecessors. Moreover, the creation of Java was deeply rooted in the process
of refinement and adaptation that has been occurring in computer programming
languages for the past several decades. For these reasons, this section reviews
the sequence of events and forces that led to Java. As you will see, each
innovation in language design was driven by the need to solve a fundamental
problem that the preceding languages could not solve. Java is no exception.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 51 Dr.Venkateswarulu, Assoc Prof

The Birth of Modern Programming: C

The C language shook the computer world. Its impact should not be

underestimated, because it fundamentally changed the way programming was

approached and thought about. The creation of C was a direct result of the need
for a structured, efficient, high-level language that could replace assembly code

when creating systems programs. As you may know, when a computer language

is designed, trade-offs are often made, such as the following:

• Ease-of-use versus power

• Safety versus efficiency

• Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that
optimized one set of traits or the other. For example, although FORTRAN

could be used to write fairly efficient programs for scientific applications, it
was not very good for system code. And while BASIC was easy to learn, it

wasn’t very powerful, and its lack of structure made its usefulness questionable
for large programs. Assembly language can be used to produce highly efficient

programs, but it is not easy to learn or use effectively. Further, debugging
assembly code can be quite difficult.

Another compounding problem was that early computer languages such as
BASIC, COBOL, and FORTRAN were not designed around structured

principles. Instead, they relied upon the GOTO as a primary means of program
control. As a result, programs written using these languages tended to produce

“spaghetti code”—a mass of tangled jumps and conditional branches that make

a program virtually impossible to understand. While languages like Pascal are
structured, they were not designed for efficiency, and failed to include certain

features necessary to make them applicable to a wide range of programs.
(Specifically, given the standard dialects of Pascal available at the time, it was

not practical to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the
conflicting attributes that had dogged earlier efforts. Yet the need for such a

language was pressing. By the early 1970s, the computer revolution was
beginning to take hold, and the demand for software was rapidly outpacing
programmers’ ability to produce it. A great deal of effort was being expended
in academic circles in an attempt to create a better computer language. But, and
perhaps most importantly, a secondary force was beginning to be felt.
Computer hardware was finally becoming common enough that a critical mass

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 52 Dr.Venkateswarulu, Assoc Prof

was being reached. No longer were computers kept behind locked doors. For

the first time, programmers were gaining virtually unlimited access to their

machines. This allowed the freedom to experiment. It also allowed
programmers to begin to create their own tools. On the eve of C’s creation, the

stage was set for a quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running

the UNIX operating system, C was the result of a development process that
started with an older language called BCPL, developed by Martin Richards.

BCPL influenced a language called B, invented by Ken Thompson, which led to

the development of C in the 1970s. For many years, the de facto standard for C
was the one supplied with the UNIX operating system and described in The C
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall,

1978). C was formally standardized in December 1989, when the American

National Standards Institute (ANSI) standard for C was adopted.

The creation of C is considered by many to have marked the beginning of
the modern age of computer languages. It successfully synthesized the
conflicting attributes that had so troubled earlier languages. The result was a
powerful, efficient, structured language that was relatively easy to learn. It also
included one other, nearly intangible aspect: it was a programmer’s language.

Prior to the invention of C, computer languages were generally designed either

as academic exercises or by bureaucratic committees. C is different. It was
designed, implemented, and developed by real, working programmers,
reflecting the way that they approached the job of programming. Its features

were honed, tested, thought about, and rethought by the people who actually
used the language. The result was a language that programmers liked to use.

Indeed, C quickly attracted many followers who had a near-religious zeal for it.
As such, it found wide and rapid acceptance in the programmer community. In

short, C is a language designed by and for programmers. As you will see, Java

inherited this legacy.

C++: The Next Step

During the late 1970s and early 1980s, C became the dominant computer
programming language, and it is still widely used today. Since C is a successful
and useful language, you might ask why a need for something else existed. The

answer is complexity. Throughout the history of programming, the increasing
complexity of programs has driven the need for better ways to manage that
complexity. C++ is a response to that need. To better understand why managing

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 53 Dr.Venkateswarulu, Assoc Prof

program complexity is fundamental to the creation of C++, consider the
following.

Approaches to programming have changed dramatically since the invention

of the computer. For example, when computers were first invented,
programming was done by manually toggling in the binary machine
instructions by use of the front panel. As long as programs were just a few
hundred instructions long, this approach worked. As programs grew, assembly

language was invented so that a programmer could deal with larger,
increasingly complex programs by using symbolic representations of the

machine instructions. As programs continued to grow, high-level languages
were introduced that gave the programmer more tools with which to handle

complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN
was an impressive first step, at the time it was hardly a language that

encouraged clear and easy-to-understand programs. The 1960s gave birth to

structured programming. This is the method of programming championed by
languages such as C. The use of structured languages enabled programmers to
write, for the first time, moderately complex programs fairly easily. However,

even with structured programming methods, once a project reaches a certain
size, its complexity exceeds what a programmer can manage. By the early

1980s, many projects were pushing the structured approach past its limits. To
solve this problem, a new way to program was invented, called object-oriented

programming (OOP). Object-oriented programming is discussed in detail later
in this book, but here is a brief definition: OOP is a programming methodology

that helps organize complex programs through the use of inheritance,

encapsulation, and polymorphism.

In the final analysis, although C is one of the world’s great programming
languages, there is a limit to its ability to handle complexity. Once the size of a

program exceeds a certain point, it becomes so complex that it is difficult to
grasp as a totality. While the precise size at which this occurs differs,
depending upon both the nature of the program and the programmer, there is

always a threshold at which a program becomes unmanageable. C++ added
features that enabled this threshold to be broken, allowing programmers to
comprehend and manage larger programs.

C++ was invented by Bjarne Stroustrup in 1979, while he was working at
Bell Laboratories in Murray Hill, New Jersey. Stroustrup initially called the
new language “C with Classes.” However, in 1983, the name was changed to
C++. C++ extends C by adding object-oriented features. Because C++ is built

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 54 Dr.Venkateswarulu, Assoc Prof

on the foundation of C, it includes all of C’s features, attributes, and benefits.
This is a crucial reason for the success of C++ as a language. The invention of
C++ was not an attempt to create a completely new programming language.

Instead, it was an enhancement to an already highly successful one.

The Stage Is Set for Java

By the end of the 1980s and the early 1990s, object-oriented programming
using C++ took hold. Indeed, for a brief moment it seemed as if programmers
had finally found the perfect language. Because C++ blended the high

efficiency and stylistic elements of C with the object-oriented paradigm, it was
a language that could be used to create a wide range of programs. However, just
as in the past, forces were brewing that would, once again, drive computer
language evolution forward. Within a few years, the World Wide Web and the

Internet would reach critical mass. This event would precipitate another

revolution in programming.

The Creation of Java
Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed
Frank, and Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months
to develop the first working version. This language was initially called “Oak,”
but was renamed “Java” in 1995. Between the initial implementation of Oak in

the fall of 1992 and the public announcement of Java in the spring of 1995,
many more people contributed to the design and evolution of the language. Bill
Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were

key contributors to the maturing of the original prototype.

Somewhat surprisingly, the original impetus for Java was not the Internet!
Instead, the primary motivation was the need for a platform-independent (that
is, architecture-neutral) language that could be used to create software to be
embedded in various consumer electronic devices, such as microwave ovens
and remote controls. As you can probably guess, many different types of CPUs
are used as controllers. The trouble with C and C++ (and most other languages)
is that they are designed to be compiled for a specific target. Although it is
possible to compile a C++ program for just about any type of CPU, to do so
requires a full C++ compiler targeted for that CPU. The problem is that
compilers are expensive and time-consuming to create. An easier—and more

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 55 Dr.Venkateswarulu, Assoc Prof

cost-efficient—solution was needed. In an attempt to find such a solution,
Gosling and others began work on a portable, platform-independent language
that could be used to produce code that would run on a variety of CPUs under
differing environments. This effort ultimately led to the creation of Java.

About the time that the details of Java were being worked out, a second, and

ultimately more important, factor was emerging that would play a crucial role
in the future of Java. This second force was, of course, the World Wide Web.
Had the Web not taken shape at about the same time that Java was being

implemented, Java might have remained a useful but obscure language for

programming consumer electronics. However, with the emergence of the World
Wide Web, Java was propelled to the forefront of computer language design,
because the Web, too, demanded portable programs.

Most programmers learn early in their careers that portable programs are as
elusive as they are desirable. While the quest for a way to create efficient,
portable (platform-independent) programs is nearly as old as the discipline of
programming itself, it had taken a back seat to other, more pressing problems.

Further, because (at that time) much of the computer world had divided itself
into the three competing camps of Intel, Macintosh, and UNIX, most
programmers stayed within their fortified boundaries, and the urgent need for
portable code was reduced. However, with the advent of the Internet and the

Web, the old problem of portability returned with a vengeance. After all, the
Internet consists of a diverse, distributed universe populated with various types
of computers, operating systems, and CPUs. Even though many kinds of

platforms are attached to the Internet, users would like them all to be able to
run the same program. What was once an irritating but low-priority problem
had become a high-profile necessity.

By 1993, it became obvious to members of the Java design team that the
problems of portability frequently encountered when creating code for
embedded controllers are also found when attempting to create code for the
Internet. In fact, the same problem that Java was initially designed to solve on a
small scale could also be applied to the Internet on a large scale. This
realization caused the focus of Java to switch from consumer electronics to
Internet programming. So, while the desire for an architecture-neutral
programming language provided the initial spark, the Internet ultimately led to
Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++.
This is by intent. The Java designers knew that using the familiar syntax of C

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 56 Dr.Venkateswarulu, Assoc Prof

and echoing the object-oriented features of C++ would make their language
appealing to the legions of experienced C/C++ programmers. In addition to the
surface similarities, Java shares some of the other attributes that helped make C
and C++ successful. First, Java was designed, tested, and refined by real,
working programmers. It is a language grounded in the needs and experiences
of the people who devised it. Thus, Java is a programmer’s language. Second,

Java is cohesive and logically consistent. Third, except for those constraints
imposed by the Internet environment, Java gives you, the programmer, full

control. If you program well, your programs reflect it. If you program poorly,

your programs reflect that, too. Put differently, Java is not a language with

training wheels. It is a language for professional programmers.

Because of the similarities between Java and C++, it is tempting to think of

Java as simply the “Internet version of C++.” However, to do so would be a

large mistake. Java has significant practical and philosophical differences.

While it is true that Java was influenced by C++, it is not an enhanced version
of C++. For example, Java is neither upwardly nor downwardly compatible

with C++. Of course, the similarities with C++ are significant, and if you are a

C++ programmer, then you will feel right at home with Java. One other point:

Java was not designed to replace C++. Java was designed to solve a certain set

of problems. C++ was designed to solve a different set of problems. Both will

coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two
reasons: to adapt to changes in environment and to implement advances in the

art of programming. The environmental change that prompted Java was the
need for platform-independent programs destined for distribution on the
Internet. However, Java also embodies changes in the way that people approach

the writing of programs. For example, Java enhanced and refined the object-
oriented paradigm used by C++, added integrated support for multithreading,
and provided a library that simplified Internet access. In the final analysis,

though, it was not the individual features of Java that made it so remarkable.
Rather, it was the language as a whole. Java was the perfect response to the
demands of the then newly emerging, highly distributed computing universe.
Java was to Internet programming what C was to system programming: a
revolutionary force that changed the world.

The C# Connection

The reach and power of Java continues to be felt in the world of computer

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 57 Dr.Venkateswarulu, Assoc Prof

language development. Many of its innovative features, constructs, and
concepts have become part of the baseline for any new language. The success
of Java is simply too important to ignore.

Perhaps the most important example of Java’s influence is C#. Created by
Microsoft to support the .NET Framework, C# is closely related to Java. For
example, both share the same general syntax, support distributed programming,
and utilize the same object model. There are, of course, differences between

Java and C#, but the overall “look and feel” of these languages is very similar.
This “cross-pollination” from Java to C# is the strongest testimonial to date

that Java redefined the way we think about and use a computer language.

How Java Impacted the Internet
The Internet helped catapult Java to the forefront of programming, and Java, in

turn, had a profound effect on the Internet. In addition to simplifying web
programming in general, Java innovated a new type of networked program
called the applet that changed the way the online world thought about content.
Java also addressed some of the thorniest issues associated with the Internet:

portability and security. Let’s look more closely at each of these.

Java Applets

At the time of Java’s creation, one of its most exciting features was the applet.

An applet is a special kind of Java program that is designed to be transmitted
over the Internet and automatically executed inside a Java-compatible web

browser. If the user clicks a link that contains an applet, the applet will
download and run in the browser. Applets were intended to be small programs.

They were typically used to display data provided by the server, handle user
input, or provide simple functions, such as a loan calculator, that execute
locally, rather than on the server. In essence, the applet allowed some
functionality to be moved from the server to the client.

The creation of the applet was important because, at the time, it expanded
the universe of objects that could move about freely in cyberspace. In general,
there are two very broad categories of objects that are transmitted between the
server and the client: passive information and dynamic, active programs. For
example, when you read your e-mail, you are viewing passive data. Even when
you download a program, the program’s code is still only passive data until you

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 58 Dr.Venkateswarulu, Assoc Prof

execute it. By contrast, the applet is a dynamic, self-executing program. Such a
program is an active agent on the client computer, yet it is initiated by the
server.

In the early days of Java, applets were a crucial part of Java programming.

They illustrated the power and benefits of Java, added an exciting dimension to
web pages, and enabled programmers to explore the full extent of what was
possible with Java. Although it is likely that there are still applets in use today,
over time they became less important. For reasons that will be explained,
beginning with JDK 9, the phase-out of applets began, with applet support

being removed by JDK 11.

Security

As desirable as dynamic, networked programs are, they can also present serious

problems in the areas of security and portability. Obviously, a program that
downloads and executes on the client computer must be prevented from doing

harm. It must also be able to run in a variety of different environments and

under different operating systems. As you will see, Java solved these problems
in an effective and elegant way. Let’s look a bit more closely at each, beginning

with security.

As you are likely aware, every time you download a “normal” program, you
are taking a risk, because the code you are downloading might contain a virus,
Trojan horse, or other harmful code. At the core of the problem is the fact that

malicious code can cause its damage because it has gained unauthorized access
to system resources. For example, a virus program might gather private

information, such as credit card numbers, bank account balances, and
passwords, by searching the contents of your computer’s local file system. In
order for Java to enable programs to be safely downloaded and executed on the

client computer, it was necessary to prevent them from launching such an

attack.

Java achieved this protection by enabling you to confine an application to
the Java execution environment and prevent it from accessing other parts of the
computer. (You will see how this is accomplished shortly.) The ability to
download programs with a degree of confidence that no harm will be done may

have been the single most innovative aspect of Java.

Portability

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 59 Dr.Venkateswarulu, Assoc Prof

Portability is a major aspect of the Internet because there are many different
types of computers and operating systems connected to it. If a Java program
were to be run on virtually any computer connected to the Internet, there
needed to be some way to enable that program to execute on different systems.
In other words, a mechanism that allows the same application to be downloaded
and executed by a wide variety of CPUs, operating systems, and browsers is
required. It is not practical to have different versions of the application for
different computers. The same application code must work on all computers.
Therefore, some means of generating portable executable code was needed. As
you will soon see, the same mechanism that helps ensure security also helps

create portability.

Java’s Magic: The Bytecode
The key that allowed Java to solve both the security and the portability
problems just described is that the output of a Java compiler is not executable
code. Rather, it is bytecode. Bytecode is a highly optimized set of instructions

designed to be executed by what is called the Java Virtual Machine (JVM),
which is part of the Java Runtime Environment (JRE). In essence, the original

JVM was designed as an interpreter for bytecode. This may come as a bit of a
surprise since many modern languages are designed to be compiled into

executable code because of performance concerns. However, the fact that a

Java program is executed by the JVM helps solve the major problems

associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a
program in a wide variety of environments because only the JVM needs to be
implemented for each platform. Once a JRE exists for a given system, any Java
program can run on it. Remember, although the details of the JVM will differ
from platform to platform, all understand the same Java bytecode. If a Java
program were compiled to native code, then different versions of the same

program would have to exist for each type of CPU connected to the Internet.
This is, of course, not a feasible solution. Thus, the execution of bytecode by
the JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it
secure. Because the JVM is in control, it manages program execution. Thus, it
is possible for the JVM to create a restricted execution environment, called the
sandbox, that contains the program, preventing unrestricted access to the

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 60 Dr.Venkateswarulu, Assoc Prof

machine. Safety is also enhanced by certain restrictions that exist in the Java
language.

In general, when a program is compiled to an intermediate form and then
interpreted by a virtual machine, it runs slower than it would run if compiled to
executable code. However, with Java, the differential between the two is not so
great. Because bytecode has been highly optimized, the use of bytecode enables
the JVM to execute programs much faster than you might expect.

Although Java was designed as an interpreted language, there is nothing
about Java that prevents on-the-fly compilation of bytecode into native code in
order to boost performance. For this reason, the HotSpot technology was
introduced not long after Java’s initial release. HotSpot provides a Just-In-

Time (JIT) compiler for bytecode. When a JIT compiler is part of the JVM,

selected portions of bytecode are compiled into executable code in real time, on
a piece-by-piece, demand basis. It is important to understand that an entire Java

program is not compiled into executable code all at once. Instead, a JIT

compiler compiles code as it is needed, during execution. Furthermore, not all
sequences of bytecode are compiled—only those that will benefit from
compilation. The remaining code is simply interpreted. However, the just-in-

time approach still yields a significant performance boost. Even when dynamic

compilation is applied to bytecode, the portability and safety features still
apply, because the JVM is still in charge of the execution environment.

One other point: Beginning with JDK 9, some Java environments will also

support an ahead-of-time compiler that can be used to compile bytecode into

native code prior to execution by the JVM, rather than on-the-fly. Ahead-of-
time compilation is a specialized feature, and it does not replace Java’s

traditional approach just described. Because of the highly specialized nature of

ahead-of-time compilation, it is not discussed further in this book.

Moving Beyond Applets
At the time of this writing, it has been more than two decades since Java’s
original release. Over those years, many changes have taken place. At the time

of Java’s creation, the Internet was a new and exciting innovation; web
browsers were undergoing rapid development and refinement; the modern form
of the smart phone had not yet been invented; and the near ubiquitous use of
computers was still a few years off. As you would expect, Java has also
changed and so, too, has the way that Java is used. Perhaps nothing illustrates

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 61 Dr.Venkateswarulu, Assoc Prof

the ongoing evolution of Java better than the applet.

As explained previously, in the early years of Java, applets were a crucial
part of Java programming. They not only added excitement to a web page, they
were also a highly visible part of Java, which added to its charisma. However,
applets rely on a Java browser plug-in. Thus, for an applet to work, the browser
must support it. Recently, support for the Java browser plug-in has been
waning. Simply put, without browser support, applets are not viable. Because of
this, beginning with JDK 9, the phase-out of applets was begun, with support
for applets being deprecated. In the language of Java, deprecated means that a

feature is still available but flagged as obsolete. Thus, a deprecated feature
should not be used for new code. The phase-out became complete with the
release of JDK 11 because support for applets was removed.

As a point of interest, a few years after Java’s creation an alternative to
applets was added to Java. Called Java Web Start, it enabled an application to

be dynamically downloaded from a web page. It was a deployment mechanism

that was especially useful for larger Java applications that were not appropriate
for applets. The difference between an applet and a Web Start application is
that a Web Start application runs on its own, not inside the browser. Thus, it

looks much like a “normal” application. It does, however, require that a stand-
alone JRE that supports Web Start is available on the host system. Beginning

with JDK 11, Java Web Start support has been removed.

Given that neither applets nor Java Web Start are supported by modern

versions of Java, you might wonder what mechanism should be used to deploy
a Java application. At the time of this writing, part of the answer is to use the
jlink tool added by JDK 9. It can create a complete run-time image that

includes all necessary support for your program, including the JRE. Although a
detailed discussion of deployment strategies is outside the scope of this book, it
is something that you will want to pay close attention to going forward.

A Faster Release Schedule
Another major change has recently occurred in Java, but it does not involve

changes to the language or the run-time environment. Rather, it relates to the
way that Java releases are scheduled. In the past, major Java releases were

typically separated by two or more years. However, subsequent to the release of
JDK 9, the time between major Java releases has been decreased. Today, it is

anticipated that a major release will occur on a strict time-based schedule, with

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 62 Dr.Venkateswarulu, Assoc Prof

the expected time between such releases being just six months.

Each six-month release, now called a feature release, will include those
features ready at the time of the release. This increased release cadence enables
new features and enhancements to be available to Java programmers in a timely

fashion. Furthermore, it allows Java to respond quickly to the demands of an
ever-changing programming environment. Simply put, the faster release
schedule promises to be a very positive development for Java programmers.

Currently, feature releases are scheduled for March and September of each
year. As a result, JDK 10 was released in March 2018, which was six months
after the release of JDK 9. The next release (JDK 11) was in September 2018.
Again, it is anticipated that every six months a new feature release will take
place. You will want to consult the Java documentation for the latest release
schedule information.

At the time of this writing, there are a number of new Java features on the

horizon. Because of the faster release schedule, it is very likely that several of

them will be added to Java over the next few years. You will want to review the
information and release notes provided by each six-month release in detail. It is

truly an exciting time to be a Java programmer!

Servlets: Java on the Server Side
Client side code is just one half of the client/server equation. Not long after the
initial release of Java, it became obvious that Java would also be useful on the

server side. The result was the servlet. A servlet is a small program that

executes on the server.

Servlets are used to create dynamically generated content that is then served
to the client. For example, an online store might use a servlet to look up the

price for an item in a database. The price information is then used to
dynamically generate a web page that is sent to the browser. Although

dynamically generated content was available through mechanisms such as CGI

(Common Gateway Interface), the servlet offered several advantages, including

increased performance.

Because servlets (like all Java programs) are compiled into bytecode and

executed by the JVM, they are highly portable. Thus, the same servlet can be
used in a variety of different server environments. The only requirements are
that the server support the JVM and a servlet container. Today, server-side code
in general constitutes a major use of Java.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 63 Dr.Venkateswarulu, Assoc Prof

The Java Buzzwords
No discussion of Java’s history is complete without a look at the Java

buzzwords. Although the fundamental forces that necessitated the invention of
Java are portability and security, other factors also played an important role in
molding the final form of the language. The key considerations were summed
up by the Java team in the following list of buzzwords:

• Simple

• Secure

• Portable

• Object-oriented

• Robust

• Multithreaded

• Architecture-neutral

• Interpreted

• High performance

• Distributed

• Dynamic

Two of these buzzwords have already been discussed: secure and portable.
Let’s examine what each of the others implies.

Simple

Java was designed to be easy for the professional programmer to learn and use
effectively. Assuming that you have some programming experience, you will

not find Java hard to master. If you already understand the basic concepts of
object-oriented programming, learning Java will be even easier. Best of all, if
you are an experienced C++ programmer, moving to Java will require very
little effort. Because Java inherits the C/C++ syntax and many of the object-
oriented features of C++, most programmers have little trouble learning Java.

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-
code compatible with any other language. This allowed the Java team the

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 64 Dr.Venkateswarulu, Assoc Prof

freedom to design with a blank slate. One outcome of this was a clean, usable,
pragmatic approach to objects. Borrowing liberally from many seminal object-
software environments of the last few decades, Java manages to strike a
balance between the purist’s “everything is an object” paradigm and the
pragmatist’s “stay out of my way” model. The object model in Java is simple
and easy to extend, while primitive types, such as integers, are kept as high-
performance nonobjects.

Robust

The multiplatformed environment of the Web places extraordinary demands on
a program, because the program must execute reliably in a variety of systems.
Thus, the ability to create robust programs was given a high priority in the
design of Java. To gain reliability, Java restricts you in a few key areas to force
you to find your mistakes early in program development. At the same time,

Java frees you from having to worry about many of the most common causes of

programming errors. Because Java is a strictly typed language, it checks your

code at compile time. However, it also checks your code at run time. Many

hard-to-track-down bugs that often turn up in hard-to-reproduce run-time

situations are simply impossible to create in Java. Knowing that what you have
written will behave in a predictable way under diverse conditions is a key

feature of Java.

To better understand how Java is robust, consider two of the main reasons
for program failure: memory management mistakes and mishandled

exceptional conditions (that is, run-time errors). Memory management can be a

difficult, tedious task in traditional programming environments. For example,
in C/C++, the programmer will often manually allocate and free dynamic
memory. This sometimes leads to problems, because programmers will either
forget to free memory that has been previously allocated or, worse, try to free
some memory that another part of their code is still using. Java virtually
eliminates these problems by managing memory allocation and deallocation for
you. (In fact, deallocation is completely automatic, because Java provides
garbage collection for unused objects.) Exceptional conditions in traditional
environments often arise in situations such as division by zero or “file not
found,” and they must be managed with clumsy and hard-to-read constructs.
Java helps in this area by providing object-oriented exception handling. In a
well-written Java program, all run-time errors can—and should—be managed
by your program.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 65 Dr.Venkateswarulu, Assoc Prof

Multithreaded

Java was designed to meet the real-world requirement of creating interactive,

networked programs. To accomplish this, Java supports multithreaded
programming, which allows you to write programs that do many things
simultaneously. The Java run-time system comes with an elegant yet

sophisticated solution for multiprocess synchronization that enables you to
construct smoothly running interactive systems. Java’s easy-to-use approach to
multithreading allows you to think about the specific behavior of your program,

not the multitasking subsystem.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and
portability. At the time of Java’s creation, one of the main problems facing
programmers was that no guarantee existed that if you wrote a program today,

it would run tomorrow—even on the same machine. Operating system

upgrades, processor upgrades, and changes in core system resources can all
combine to make a program malfunction. The Java designers made several hard

decisions in the Java language and the Java Virtual Machine in an attempt to
alter this situation. Their goal was “write once; run anywhere, any time,

forever.” To a great extent, this goal was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by

compiling into an intermediate representation called Java bytecode. This code
can be executed on any system that implements the Java Virtual Machine. Most
previous attempts at cross-platform solutions have done so at the expense of
performance. As explained earlier, the Java bytecode was carefully designed so
that it would be easy to translate directly into native machine code for very
high performance by using a just-in-time compiler. Java run-time systems that
provide this feature lose none of the benefits of the platform-independent code.

Distributed

Java is designed for the distributed environment of the Internet because it
handles TCP/IP protocols. In fact, accessing a resource using a URL is not

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 66 Dr.Venkateswarulu, Assoc Prof

much different from accessing a file. Java also supports Remote Method
Invocation (RMI). This feature enables a program to invoke methods across a
network.

Dynamic

Java programs carry with them substantial amounts of run-time type
information that is used to verify and resolve accesses to objects at run time.
This makes it possible to dynamically link code in a safe and expedient

manner. This is crucial to the robustness of the Java environment, in which
small fragments of bytecode may be dynamically updated on a running system.

The Evolution of Java
The initial release of Java was nothing short of revolutionary, but it did not
mark the end of Java’s era of rapid innovation. Unlike most other software
systems that usually settle into a pattern of small, incremental improvements,

Java continued to evolve at an explosive pace. Soon after the release of Java

1.0, the designers of Java had already created Java 1.1. The features added by
Java 1.1 were more significant and substantial than the increase in the minor

revision number would have you think. Java 1.1 added many new library
elements, redefined the way events are handled, and reconfigured many
features of the 1.0 library. It also deprecated (rendered obsolete) several
features originally defined by Java 1.0. Thus, Java 1.1 both added to and

subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second
generation.” The creation of Java 2 was a watershed event, marking the

beginning of Java’s “modern age.” The first release of Java 2 carried the

version number 1.2. It may seem odd that the first release of Java 2 used the 1.2

version number. The reason is that it originally referred to the internal version
number of the Java libraries, but then was generalized to refer to the entire

release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform
Standard Edition), and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the
Collections Framework, and it enhanced the Java Virtual Machine and various
programming tools. Java 2 also contained a few deprecations. The most
important affected the Thread class in which the methods suspend(), resume(

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 67 Dr.Venkateswarulu, Assoc Prof

), and stop() were deprecated.

J2SE 1.3 was the first major upgrade to the original Java 2 release. For the
most part, it added to existing functionality and “tightened up” the
development environment. In general, programs written for version 1.2 and

those written for version 1.3 are source-code compatible. Although version 1.3
contained a smaller set of changes than the preceding three major releases, it
was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained
several important upgrades, enhancements, and additions. For example, it
added the new keyword assert, chained exceptions, and a channel-based I/O
subsystem. It also made changes to the Collections Framework and the
networking classes. In addition, numerous small changes were made
throughout. Despite the significant number of new features, version 1.4
maintained nearly 100 percent source-code compatibility with prior versions.

The next release of Java was J2SE 5, and it was revolutionary. Unlike most
of the previous Java upgrades, which offered important, but measured
improvements, J2SE 5 fundamentally expanded the scope, power, and range of
the language. To grasp the magnitude of the changes that J2SE 5 made to Java,
consider the following list of its major new features:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 68 Dr.Venkateswarulu, Assoc Prof

• Generics

• Annotations

• Autoboxing and auto-unboxing

• Enumerations

• Enhanced, for-each style for loop

• Variable-length arguments (varargs)

• Static import

• Formatted I/O

• Concurrency utilities

This is not a list of minor tweaks or incremental upgrades. Each item in the list

represented a significant addition to the Java language. Some, such as generics,
the enhanced for, and varargs, introduced new syntax elements. Others, such as

autoboxing and auto-unboxing, altered the semantics of the language.
Annotations added an entirely new dimension to programming. In all cases, the

impact of these additions went beyond their direct effects. They changed the
very character of Java itself.

The importance of these new features is reflected in the use of the version
number “5.” The next version number for Java would normally have been 1.5.

However, the new features were so significant that a shift from 1.4 to 1.5 just
didn’t seem to express the magnitude of the change. Instead, Sun elected to

increase the version number to 5 as a way of emphasizing that a major event

was taking place. Thus, it was named J2SE 5, and the developer’s kit was called

JDK 5. However, in order to maintain consistency, Sun decided to use 1.5 as its

internal version number, which is also referred to as the developer version
number. The “5” in J2SE 5 is called the product version number.

The next release of Java was called Java SE 6. Sun once again decided to
change the name of the Java platform. First, notice that the “2” was dropped.
Thus, the platform was now named Java SE, and the official product name was
Java Platform, Standard Edition 6. The Java Development Kit was called JDK

6. As with J2SE 5, the 6 in Java SE 6 is the product version number. The
internal, developer version number is 1.6.

Java SE 6 built on the base of J2SE 5, adding incremental improvements.

Java SE 6 added no major features to the Java language proper, but it did
enhance the API libraries, added several new packages, and offered
improvements to the run time. It also went through several updates during its
(in Java terms) long life cycle, with several upgrades added along the way. In

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 69 Dr.Venkateswarulu, Assoc Prof

general, Java SE 6 served to further solidify the advances made by J2SE 5.

Java SE 7 was the next release of Java, with the Java Development Kit being
called JDK 7, and an internal version number of 1.7. Java SE 7 was the first
major release of Java since Sun Microsystems was acquired by Oracle. Java SE

7 contained many new features, including significant additions to the language
and the API libraries. Upgrades to the Java run-time system that support non-
Java languages were also included, but it is the language and library additions
that were of most interest to Java programmers.

The new language features were developed as part of Project Coin. The
purpose of Project Coin was to identify a number of small changes to the Java
language that would be incorporated into JDK 7. Although these features were
collectively referred to as “small,” the effects of these changes have been quite

large in terms of the code they impact. In fact, for many programmers, these

changes may well have been the most important new features in Java SE 7.
Here is a list of the language features added by JDK 7:

• A String can now control a switch statement.

• Binary integer literals.

• Underscores in numeric literals.

• An expanded try statement, called try-with-resources, that supports
automatic resource management. (For example, streams can be closed

automatically when they are no longer needed.)

• Type inference (via the diamond operator) when constructing a generic

instance.

• Enhanced exception handling in which two or more exceptions can be

caught by a single catch (multi-catch) and better type checking for
exceptions that are rethrown.

• Although not a syntax change, the compiler warnings associated with

some types of varargs methods were improved, and you have more control
over the warnings.

As you can see, even though the Project Coin features were considered small
changes to the language, their benefits were much larger than the qualifier
“small” would suggest. In particular, the try-with-resources statement has
profoundly affected the way that stream-based code is written. Also, the ability
to use a String to control a switch statement was a long-desired improvement
that simplified coding in many situations.

Java SE 7 made several additions to the Java API library. Two of the most

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 70 Dr.Venkateswarulu, Assoc Prof

important were the enhancements to the NIO Framework and the addition of
the Fork/Join Framework. NIO (which originally stood for New I/O) was added

to Java in version 1.4. However, the changes added by Java SE 7 fundamentally

expanded its capabilities. So significant were the changes, that the term NIO.2
is often used.

The Fork/Join Framework provides important support for parallel
programming. Parallel programming is the name commonly given to the

techniques that make effective use of computers that contain more than one
processor, including multicore systems. The advantage that multicore

environments offer is the prospect of significantly increased program
performance. The Fork/Join Framework addressed parallel programming by:

• Simplifying the creation and use of tasks that can execute concurrently

• Automatically making use of multiple processors

Therefore, by using the Fork/Join Framework, you can easily create

scaleable applications that automatically take advantage of the processors
available in the execution environment. Of course, not all algorithms lend
themselves to parallelization, but for those that do, a significant improvement
in execution speed can be obtained.

The next release of Java was Java SE 8, with the developer’s kit being called
JDK 8. It has an internal version number of 1.8. JDK 8 was a significant
upgrade to the Java language because of the inclusion of a far-reaching new

language feature: the lambda expression. The impact of lambda expressions
was, and will continue to be, profound, changing both the way that
programming solutions are conceptualized and how Java code is written. As

explained in detail in Chapter 15, lambda expressions add functional
programming features to Java. In the process, lambda expressions can simplify
and reduce the amount of source code needed to create certain constructs, such

as some types of anonymous classes. The addition of lambda expressions also
caused a new operator (the –>) and a new syntax element to be added to the
language.

The inclusion of lambda expressions has also had a wide-ranging effect on
the Java libraries, with new features being added to take advantage of them.
One of the most important was the new stream API, which is packaged in
java.util.stream. The stream API supports pipeline operations on data and is
optimized for lambda expressions. Another new package was
java.util.function. It defines a number of functional interfaces, which provide

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 71 Dr.Venkateswarulu, Assoc Prof

additional support for lambda expressions. Other new lambda-related features
are found throughout the API library.

Another lambda-inspired feature affects interface. Beginning with JDK 8, it

is now possible to define a default implementation for a method specified by an

interface. If no implementation for a default method is created, then the default
defined by the interface is used. This feature enables interfaces to be gracefully

evolved over time because a new method can be added to an interface without
breaking existing code. It can also streamline the implementation of an

interface when the defaults are appropriate. Other new features in JDK 8

include a new time and date API, type annotations, and the ability to use
parallel processing when sorting an array, among others.

The next release of Java was Java SE 9. The developer’s kit was called JDK

9. With the release of JDK 9, the internal version number is also 9. JDK 9
represented a major Java release, incorporating significant enhancements to

both the Java language and its libraries. Like the JDK 5 and JDK 8 releases,
JDK 9 affected the Java language and its API libraries in fundamental ways.

The primary new JDK 9 feature was modules, which enable you to specify

the relationship and dependencies of the code that comprises an application.
Modules also add another dimension to Java’s access control features. The

inclusion of modules caused a new syntax element and several keywords to be
added to Java. Furthermore, a tool called jlink was added to the JDK, which

enables a programmer to create a run-time image of an application that
contains only the necessary modules. A new file type, called JMOD, was

created. Modules also have a profound affect on the API library because,
beginning with JDK 9, the library packages are now organized into modules.

Although modules constitute a major Java enhancement, they are
conceptually simple and straightforward. Furthermore, because pre-module

legacy code is fully supported, modules can be integrated into the development
process on your timeline. There is no need to immediately change any

preexisting code to handle modules. In short, modules added substantial

functionality without altering the essence of Java.

In addition to modules, JDK 9 included many other new features. One of
particular interest is JShell, which is a tool that supports interactive program
experimentation and learning. (An introduction to JShell is found in Appendix
B.) Another interesting upgrade is support for private interface methods. Their
inclusion further enhanced JDK 8’s support for default methods in interfaces.
JDK 9 added a search feature to the javadoc tool and a new tag called @index

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 72 Dr.Venkateswarulu, Assoc Prof

to support it. As with previous releases, JDK 9 contained a number of
enhancements to Java’s API libraries.

As a general rule, in any Java release, it is the new features that receive the
most attention. However, there was one high-profile aspect of Java that was
deprecated by JDK 9: applets. Beginning with JDK 9, applets were no longer

recommended for new projects. As explained earlier in this chapter, because of

waning browser support for applets (and other factors), JDK 9 deprecated the
entire applet API.

The next release of Java was Java SE 10 (JDK 10). As explained earlier,

beginning with JDK 10, Java releases are anticipated to occur on a strict time-
based schedule, with the time between major releases expected to be just six
months. As a result, JDK 10 was released in March 2018, which was six months

after the release of JDK 9. The primary new language feature added by JDK 10
was support for local variable type inference. With local variable type
inference, it is now possible to let the type of a local variable be inferred from

the type of its initializer, rather than being explicitly specified. To support this

new capability, the context-sensitive identifier var was added to Java as a
reserved type name. Type inference can streamline code by eliminating the
need to redundantly specify a variable’s type when it can be inferred from its
initializer. It can also simplify declarations in cases in which the type is
difficult to discern or cannot be explicitly specified. Local variable type

inference has become a common part of the contemporary programming
environment. Its inclusion in Java helps keep Java up-to-date with evolving
trends in language design. Along with a number of other changes, JDK 10 also
redefined the Java version string, changing the meaning of the version numbers
so that they better align with the new time-based release schedule.

At the time of this writing, the latest version of Java is Java SE 11 (JDK 11).

It was released in September 2018, which was six months after JDK 10. The
primary new language feature in JDK 11 is support for the use of var in a

lambda expression. Along with a number of tweaks and updates to the API in
general, JDK 11 adds a new networking API, which will be of interest to a wide
range of developers. Called the HTTP Client API, it is packaged in
java.net.http, and it provides enhanced, updated, and improved networking
support for HTTP clients. Also, another execution mode was added to the Java
launcher that enables it to directly execute simple single-file programs. JDK 11
also removes some features. Perhaps of the greatest interest because of its
historical significance is the removal of support for applets. Recall that applets

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 73 Dr.Venkateswarulu, Assoc Prof

were first deprecated by JDK 9. With the release of JDK 11, applet support has
been removed. Support for another deployment-related technology called Java
Web Start has also been removed from JDK 11. As the execution environment
has continued to evolve, both applets and Java Web Start were rapidly losing
relevance. Another key change in JDK 11 is that JavaFX is no longer included
in the JDK. Instead, this GUI framework has become a separate open-source

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 74 Dr.Venkateswarulu, Assoc Prof

project. Because these features are no longer part of the JDK, they are not

discussed in this book.

One other point about the evolution of Java: Beginning in 2006, the process

of open-sourcing Java began. Today, open-source implementations of the JDK
are available. Open-sourcing further contributes to the dynamic nature of Java

development. In the final analysis, Java’s legacy of innovation is secure. Java
remains the vibrant, nimble language that the programming world has come to

expect.

The material in this book has been updated for JDK 11. Many new Java

features, updates, and additions are described throughout. As the preceding
discussion has highlighted, however, the history of Java programming is
marked by dynamic change. You will want to review the new features in each

subsequent Java release. Simply put: The evolution of Java continues!

A Culture of Innovation
Since the beginning, Java has been at the center of a culture of innovation. Its
original release redefined programming for the Internet. The Java Virtual
Machine (JVM) and bytecode changed the way we think about security and

portability. Portable code made the Web come alive. The Java Community
Process (JCP) redefined the way that new ideas are assimilated into the
language. The world of Java has never stood still for very long. JDK 11 is the

latest release in Java’s ongoing, dynamic history.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 75 Dr.Venkateswarulu, Assoc Prof

CHAPTER

An Overview of Java

As in all other computer languages, the elements of Java do not exist in

isolation. Rather, they work together to form the language as a whole.

However, this interrelatedness can make it difficult to describe one aspect of
Java without involving several others. Often a discussion of one feature
implies prior knowledge of another. For this reason, this chapter presents a

quick overview of several key features of Java. The material described here
will give you a foothold that will allow you to write and understand simple
programs. Most of the topics discussed will be examined in greater detail in

the remaining

chapters of Part I.

Object-Oriented Programming
Object-oriented programming (OOP) is at the core of Java. In fact, all Java
programs are to at least some extent object-oriented. OOP is so integral to Java
that it is best to understand its basic principles before you begin writing even
simple Java programs. Therefore, this chapter begins with a discussion of the
theoretical aspects of OOP.

Two Paradigms

All computer programs consist of two elements: code and data. Furthermore, a
program can be conceptually organized around its code or around its data.
That is, some programs are written around “what is happening” and others are

written around “who is being affected.” These are the two paradigms that
govern how a program is constructed. The first way is called the process-
oriented model. This approach characterizes a program as a series of linear

steps (that is, code). The process-oriented model can be thought of as code
acting on data. Procedural languages such as C employ this model to
considerable success. However, as mentioned in Chapter 1, problems with this

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 76 Dr.Venkateswarulu, Assoc Prof

approach appear as programs grow larger and more complex.

To manage increasing complexity, the second approach, called object-
oriented programming, was conceived. Object-oriented programming
organizes

a program around its data (that is, objects) and a set of well-defined interfaces

to that data. An object-oriented program can be characterized as data
controlling access to code. As you will see, by switching the controlling entity
to data, you can achieve several organizational benefits.

Abstraction

An essential element of object-oriented programming is abstraction. Humans

manage complexity through abstraction. For example, people do not think of a

car as a set of tens of thousands of individual parts. They think of it as a well-

defined object with its own unique behavior. This abstraction allows people to
use a car to drive to the grocery store without being overwhelmed by the

complexity of the individual parts. They can ignore the details of how the

engine, transmission, and braking systems work. Instead, they are free to utilize

the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical

classifications. This allows you to layer the semantics of complex systems,
breaking them into more manageable pieces. From the outside, the car is a
single object. Once inside, you see that the car consists of several subsystems:

steering, brakes, sound system, seat belts, heating, cellular phone, and so on. In
turn, each of these subsystems is made up of more specialized units. For
instance, the sound system might consist of a radio, a CD player, and/or MP3

player. The point is that you manage the complexity of the car (or any other
complex system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to
computer programs. The data from a traditional process-oriented program can
be transformed by abstraction into its component objects. A sequence of
process steps can become a collection of messages between these objects. Thus,
each of these objects describes its own unique behavior. You can treat these
objects as concrete entities that respond to messages telling them to do
something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis
for human understanding. It is important that you understand how these
concepts translate into programs. As you will see, object-oriented

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 77 Dr.Venkateswarulu, Assoc Prof

programming is a powerful and natural paradigm for creating programs that
survive the inevitable changes accompanying the life cycle of any major
software project, including conception, growth, and aging. For example, once
you have well- defined objects and clean, reliable interfaces to those objects,
you can gracefully decommission or replace parts of an older system without
fear.

The Three OOP Principles

All object-oriented programming languages provide mechanisms that help you

implement the object-oriented model. They are encapsulation, inheritance, and
polymorphism. Let’s take a look at these concepts now.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it

manipulates, and keeps both safe from outside interference and misuse. One
way to think about encapsulation is as a protective wrapper that prevents the
code and data from being arbitrarily accessed by other code defined outside the

wrapper. Access to the code and data inside the wrapper is tightly controlled
through a well-defined interface. To relate this to the real world, consider the
automatic transmission on an automobile. It encapsulates hundreds of bits of

information about your engine, such as how much you are accelerating, the
pitch of the surface you are on, and the position of the shift lever. You, as the
user, have only one method of affecting this complex encapsulation: by moving
the gear-shift lever. You can’t affect the transmission by using the turn signal
or windshield wipers, for example. Thus, the gear-shift lever is a well-defined
(indeed, unique) interface to the transmission. Further, what occurs inside the
transmission does not affect objects outside the transmission. For example,
shifting gears does not turn on the headlights! Because an automatic
transmission is encapsulated, dozens of car manufacturers can implement one

in any way they please. However, from the driver’s point of view, they all work
the same. This same idea can be applied to programming. The power of
encapsulated code is that everyone knows how to access it and thus can use it
regardless of the implementation details—and without fear of unexpected side
effects.

In Java, the basis of encapsulation is the class. Although the class will be
examined in great detail later in this book, the following brief discussion will
be helpful now. A class defines the structure and behavior (data and code) that

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 78 Dr.Venkateswarulu, Assoc Prof

will be shared by a set of objects. Each object of a given class contains the
structure and behavior defined by the class, as if it were stamped out by a mold
in the shape of the class. For this reason, objects are sometimes referred to as
instances of a class. Thus, a class is a logical construct; an object has physical
reality.

When you create a class, you will specify the code and data that constitute
that class. Collectively, these elements are called members of the class.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 79 Dr.Venkateswarulu, Assoc Prof

Specifically, the data defined by the class are referred to as member variables

or instance variables. The code that operates on that data is referred to as
member methods or just methods. (If you are familiar with C/C++, it may help

to know that what a Java programmer calls a method, a C/C++ programmer
calls a function.) In properly written Java programs, the methods define how

the member variables can be used. This means that the behavior and interface

of a class are defined by the methods that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are
mechanisms for hiding the complexity of the implementation inside the class.

Each method or variable in a class may be marked private or public. The public
interface of a class represents everything that external users of the class need to
know, or may know. The private methods and data can only be accessed by

code that is a member of the class. Therefore, any other code that is not a
member of the class cannot access a private method or variable. Since the

private members of a class may only be accessed by other parts of your
program through the class’ public methods, you can ensure that no improper

actions take place. Of course, this means that the public interface should be
carefully designed not to expose too much of the inner workings of a class (see

Figure 2-1).

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 80 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 81 Dr.Venkateswarulu, Assoc Prof

Figure 2-1 Encapsulation: public methods can be used to protect private data.

Inheritance

Inheritance is the process by which one object acquires the properties of

another object. This is important because it supports the concept of hierarchical

classification. As mentioned earlier, most knowledge is made manageable by
hierarchical (that is, top-down) classifications. For example, a Golden

Retriever is part of the classification dog, which in turn is part of the mammal

class, which is under the larger class animal. Without the use of hierarchies,
each object would need to define all of its characteristics explicitly. However,
by use of inheritance, an object need only define those qualities that make it

unique within its class. It can inherit its general attributes from its parent. Thus,

it is the inheritance mechanism that makes it possible for one object to be a
specific instance of a more general case. Let’s take a closer look at this process.

Most people naturally view the world as made up of objects that are related

to each other in a hierarchical way, such as animals, mammals, and dogs. If you
wanted to describe animals in an abstract way, you would say they have some
attributes, such as size, intelligence, and type of skeletal system. Animals also
have certain behavioral aspects; they eat, breathe, and sleep. This description of

attributes and behavior is the class definition for animals.

If you wanted to describe a more specific class of animals, such as
mammals, they would have more specific attributes, such as type of teeth and
mammary glands. This is known as a subclass of animals, where animals are
referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all
of the attributes from animals. A deeply inherited subclass inherits all of the
attributes from each of its ancestors in the class hierarchy.

Inheritance interacts with encapsulation as well. If a given class
encapsulates some attributes, then any subclass will have the same attributes
plus any that it adds as part of its specialization (see Figure 2-2). This is a key
concept that lets object-oriented programs grow in complexity linearly rather
than geometrically. A new subclass inherits all of the attributes of all of its
ancestors. It does not have unpredictable interactions with the majority of the
rest of the code in the system.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 82 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 83 Dr.Venkateswarulu, Assoc Prof

Figure 2-2 Labrador inherits the encapsulation of all its superclasses.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 84 Dr.Venkateswarulu, Assoc Prof

Polymorphism
Polymorphism (from Greek, meaning “many forms”) is a feature that allows

one interface to be used for a general class of actions. The specific action is

determined by the exact nature of the situation. Consider a stack (which is a
last-in, first-out list). You might have a program that requires three types of
stacks. One stack is used for integer values, one for floating-point values, and

one for characters. The algorithm that implements each stack is the same,
even though the data being stored differs. In a non–object-oriented language,

you would be required to create three different sets of stack routines, with

each set using different names. However, because of polymorphism, in Java

you can specify a general set of stack routines that all share the same names.

More generally, the concept of polymorphism is often expressed by the
phrase “one interface, multiple methods.” This means that it is possible to
design a generic interface to a group of related activities. This helps reduce
complexity by allowing the same interface to be used to specify a general
class of action. It is the compiler’s job to select the specific action (that is,
method) as it applies to each situation. You, the programmer, do not need to

make this selection manually. You need only remember and utilize the
general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the

dog smells a cat, it will bark and run after it. If the dog smells its food, it will
salivate and run to its bowl. The same sense of smell is at work in both

situations. The difference is what is being smelled, that is, the type of data
being operated upon by the dog’s nose! This same general concept can be

implemented in Java as it applies to methods within a Java program.

Polymorphism, Encapsulation, and Inheritance Work

Together

When properly applied, polymorphism, encapsulation, and inheritance
combine to produce a programming environment that supports the
development of far more robust and scaleable programs than does the

process-oriented model. A well-designed hierarchy of classes is the basis for
reusing the code in which
you have invested time and effort developing and testing. Encapsulation
allows you to migrate your implementations over time without breaking the
code that depends on the public interface of your classes. Polymorphism

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 85 Dr.Venkateswarulu, Assoc Prof

allows you to create clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely
illustrates the power of object-oriented design. Dogs are fun to think about
from an inheritance standpoint, but cars are more like programs. All drivers
rely on inheritance to drive different types (subclasses) of vehicles. Whether
the

vehicle is a school bus, a Mercedes sedan, a Porsche, or the family minivan,
drivers can all more or less find and operate the steering wheel, the brakes,

and the accelerator. After a bit of gear grinding, most people can even

manage the difference between a stick shift and an automatic, because they
fundamentally understand their common superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake
and gas pedals hide an incredible array of complexity with an interface so

simple you can operate them with your feet! The implementation of the
engine, the style of brakes, and the size of the tires have no effect on how

you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car

manufacturers to offer a wide array of options on basically the same vehicle.
For example, you can get an antilock braking system or traditional brakes,
power or rack-and-pinion steering, and 4-, 6-, or 8-cylinder engines. Either

way, you will still press the brake pedal to stop, turn the steering wheel to
change direction, and press the accelerator when you want to move. The
same interface can be used to control a number of different
implementations.

As you can see, it is through the application of encapsulation, inheritance,
and polymorphism that the individual parts are transformed into the object
known as a car. The same is also true of computer programs. By the
application of object-oriented principles, the various parts of a complex
program can be brought together to form a cohesive, robust, maintainable
whole.

As mentioned at the start of this section, every Java program is object-
oriented. Or, put more precisely, every Java program involves encapsulation,
inheritance, and polymorphism. Although the short example programs shown
in the rest of this chapter and in the next few chapters may not seem to
exhibit all of these features, they are nevertheless present. As you will see,
many of the features supplied by Java are part of its built-in class libraries,
which do make extensive use of encapsulation, inheritance, and

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 86 Dr.Venkateswarulu, Assoc Prof

polymorphism.

A First Simple Program
Now that the basic object-oriented underpinning of Java has been discussed,
let’s look at some actual Java programs. Let’s start by compiling and running
the short sample program shown here. As you will see, this involves a little
more work than you might imagine.

NOTE The descriptions that follow use the standard Java SE Development Kit (JDK),

which is available from Oracle. (Open source versions are also available.) If you are

using an integrated development environment (IDE), then you will need to follow a

different procedure for compiling and executing Java programs. In this case, consult

your IDE’s documentation for details.

Entering the Program

For most computer languages, the name of the file that holds the source code
to a program is immaterial. However, this is not the case with Java. The first
thing that you must learn about Java is that the name you give to a source file

is very important. For this example, the name of the source file should be
Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file
that contains (among other things) one or more class definitions. (For now,

we will be using source files that contain only one class.) The Java compiler
requires that a source file use the .java filename extension.

As you can see by looking at the program, the name of the class defined
by the program is also Example. This is not a coincidence. In Java, all code

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 87 Dr.Venkateswarulu, Assoc Prof

must reside inside a class. By convention, the name of the main class should
match the name of the file that holds the program. You should also make
sure that the capitalization of the filename matches the class name. The
reason for this is that Java is case-sensitive. At this point, the convention
that filenames correspond to class names may seem arbitrary. However, this
convention makes it easier to maintain and organize your programs.
Furthermore, as you will see later in this book, in some cases, it is required.

Compiling the Program
To compile the Example program, execute the compiler, javac, specifying the

name of the source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the

bytecode version of the program. As discussed earlier, the Java bytecode is
the intermediate representation of your program that contains instructions the

Java Virtual Machine will execute. Thus, the output of javac is not code that

can be directly executed.

To actually run the program, you must use the Java application launcher
called java. To do so, pass the class name Example as a command-line

argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

This is a simple Java program.

When Java source code is compiled, each individual class is put into its

own output file named after the class and using the .class extension. This is
why it is a good idea to give your Java source files the same name as the
class they contain—the name of the source file will match the name of the
.class file.
When you execute java as just shown, you are actually specifying the name
of the class that you want to execute. It will automatically search for a file by
that name that has the .class extension. If it finds the file, it will execute the
code contained in the specified class.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 88 Dr.Venkateswarulu, Assoc Prof

NOTE Beginning with JDK 11, Java provides a way to run some types of simple

programs directly from a source file, without explicitly invoking javac. This

technique, which can be useful in some situations, is described in Appendix C. For the

purposes of this book, it is assumed that you are using the normal compilation

process just described.

A Closer Look at the First Sample Program

Although Example.java is quite short, it includes several key features that are
common to all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

This is a comment. Like most other programming languages, Java lets you

enter a remark into a program’s source file. The contents of a comment are
ignored by the compiler. Instead, a comment describes or explains the

operation of the program to anyone who is reading its source code. In this

case, the comment describes the program and reminds you that the source file

should be called Example.java. Of course, in real applications, comments
generally explain
how some part of the program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the
program is called a multiline comment. This type of comment must begin
with
/* and end with */. Anything between these two comment symbols is ignored
by the compiler. As the name suggests, a multiline comment may be several
lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined.
Example is an identifier that is the name of the class. The entire class

definition, including all of its members, will be between the opening curly
brace ({) and the closing curly brace (}). For the moment, don’t worry too
much about the details of a class except to note that in Java, all program

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 89 Dr.Venkateswarulu, Assoc Prof

activity occurs within one. This is one reason why all Java programs are (at
least a little bit) object-oriented.

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment
begins with a // and ends at the end of the line. As a general rule,
programmers use multiline comments for longer remarks and single-line
comments for brief, line-by-line descriptions. The third type of comment, a
documentation comment, will be discussed in the “Comments” section later in
this chapter.

The next line of code is shown here:

public static void main(String args[]) {

This line begins the main() method. As the comment preceding it suggests,

this is the line at which the program will begin executing. As a general rule, a
Java program begins execution by calling main(). The full meaning of each

part of this line cannot be given now, since it involves a detailed
understanding of Java’s approach to encapsulation. However, since most of

the examples in the first part of this book will use this line of code, let’s take

a brief look at each part now.

The public keyword is an access modifier, which allows the programmer to
control the visibility of class members. When a class member is preceded by

public, then that member may be accessed by code outside the class in which
it is declared. (The opposite of public is private, which prevents a member
from being used by code defined outside of its class.) In this case, main()
must be declared as public, since it must be called by code outside of its class
when the program is started. The keyword static allows main() to be called
without having to instantiate a particular instance of the class. This is

necessary since main() is called by the Java Virtual Machine before any

objects are made. The keyword void simply tells the compiler that main()
does not return a value. As you will see, methods may also return values. If

all this seems a bit confusing, don’t worry. All of these concepts will be
discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins.

Keep in mind that Java is case-sensitive. Thus, Main is different from main.

It is important to understand that the Java compiler will compile classes that

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 90 Dr.Venkateswarulu, Assoc Prof

do not contain a main() method. But java has no way to run these classes.

So, if you had typed Main instead of main, the compiler would still compile

your program. However, java would report an error because it would be

unable to find the main() method.

Any information that you need to pass to a method is received by variables
specified within the set of parentheses that follow the name of the method.
These variables are called parameters. If there are no parameters required for
a given method, you still need to include the empty parentheses. In main(),
there is only one parameter, albeit a complicated one. String args[] declares
a parameter named args, which is an array of instances of the class String.
(Arrays are collections of similar objects.) Objects of type String store
character strings. In this case, args receives any command-line arguments
present when the program is executed. This program does not make use of this
information, but other programs shown later in this book will.

The last character on the line is the {. This signals the start of main()’s

body. All of the code that comprises a method will occur between the

method’s opening curly brace and its closing curly brace.

One other point: main() is simply a starting place for your program. A
complex program will have dozens of classes, only one of which will need to
have a main() method to get things started. Furthermore, for some types of

programs, you won’t need main() at all. However, for most of the programs

shown in this book, main() is required.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("This is a simple Java program.");

This line outputs the string "This is a simple Java program." followed by a

new line on the screen. Output is actually accomplished by the built-in
println() method. In this case, println() displays the string which is passed

to it. As you will see, println() can be used to display other types of
information, too. The line begins with System.out. While too complicated to
explain in detail at this time, briefly, System is a predefined class that
provides access to the system, and out is the output stream that is connected
to the console.

As you have probably guessed, console output (and input) is not used
frequently in most real-world Java applications. Since most modern
computing environments are graphical in nature, console I/O is used mostly
for simple utility programs, demonstration programs, and server-side code.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 91 Dr.Venkateswarulu, Assoc Prof

Later in this book, you will learn other ways to generate output using Java.
But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. Many
statements in Java end with a semicolon. As you will see, the semicolon is an
important part of the Java syntax.

The first } in the program ends main(), and the last } ends the Example
class definition.

A Second Short Program
Perhaps no other concept is more fundamental to a programming language
than that of a variable. As you may know, a variable is a named memory
location that may be assigned a value by your program. The value of a
variable may be changed during the execution of the program. The next

program shows how a variable is declared and how it is assigned a value. The
program also illustrates some new aspects of console output. As the
comments at the top of the program

state, you should call this file Example2.java.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 92 Dr.Venkateswarulu, Assoc Prof

When you run this program, you will see the following output:

This is num: 100

The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in

the program is shown here:

int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other
languages) requires that variables be declared before they are used.

Following is the general form of a variable declaration:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the
name of the variable. If you want to declare more than one variable of the
specified type, you may use a comma-separated list of variable names. Java

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 93 Dr.Venkateswarulu, Assoc Prof

defines several data types, including integer, character, and floating-point. The

keyword int specifies an integer type.

In the program, the line

num = 100; // this assigns num the value 100

assigns to num the value 100. In Java, the assignment operator is a single equal
sign.

The next line of code outputs the value of num preceded by the string "This

is num:".

System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the

string that precedes it, and then the resulting string is output. (Actually, num is
first converted from an integer into its string equivalent and then concatenated
with the string that precedes it. This process is described in detail later in this
book.) This approach can be generalized. Using the + operator, you can join
together as many items as you want within a single println() statement.

The next line of code assigns num the value of num times 2. Like most
other languages, Java uses the * operator to indicate multiplication. After this

line executes, num will contain the value 200.

Here are the next two lines in the program:

System.out.print ("The value of num * 2 is ");

System.out.println (num);

Several new things are occurring here. First, the built-in method print() is

used to display the string "The value of num * 2 is ". This string is not followed
by a newline. This means that when the next output is generated, it will start on
the same line. The print() method is just like println(), except that it does not

output a newline character after each call. Now look at the call to println().
Notice that num is used by itself. Both print() and println() can be used to
output values of any of Java’s built-in types.

Two Control Statements
Although Chapter 5 will look closely at control statements, two are briefly

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 94 Dr.Venkateswarulu, Assoc Prof

introduced here so that they can be used in example programs in Chapters 3 and

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 95 Dr.Venkateswarulu, Assoc Prof

4. They will also help illustrate an important aspect of Java: blocks of code.

The if Statement

The Java if statement works much like the IF statement in any other language.

It determines the flow of execution based on whether some condition is true or
false. Its simplest form is shown here:

if(condition) statement;

Here, condition is a Boolean expression. (A Boolean expression is one that
evaluates to either true or false.) If condition is true, then the statement is

executed. If condition is false, then the statement is bypassed. Here is an

example:

if(num < 100) System.out.println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional
expression is true, and println() will execute. If num contains a value greater
than or equal to 100, then the println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational
operators which may be used in a conditional expression. Here are a few:

Notice that the test for equality is the double equal sign.

Here is a program that illustrates the if statement:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 96 Dr.Venkateswarulu, Assoc Prof

The output generated by this program is shown here:

x is less than y

x now equal to y

x now greater than y

Notice one other thing in this program. The line

int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop

Loop statements are an important part of nearly any programming language

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 97 Dr.Venkateswarulu, Assoc Prof

because they provide a way to repeatedly execute some task. As you will see in

Chapter 5, Java supplies a powerful assortment of loop constructs. Perhaps the
most versatile is the for loop. The simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop
control variable to an initial value. The condition is a Boolean expression that

tests the loop control variable. If the outcome of that test is true, statement

executes and the for loop continues to iterate. If it is false, the loop terminates.

The iteration expression determines how the loop control variable is changed
each time the loop iterates. Here is a short program that illustrates the for loop:

This program generates the following output:

This is x: 0

This is x: 1

This is x: 2

This is x: 3

This is x: 4

This is x: 5

This is x: 6

This is x: 7

This is x: 8

This is x: 9

In this example, x is the loop control variable. It is initialized to zero in the

initialization portion of the for. At the start of each iteration (including the first

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 98 Dr.Venkateswarulu, Assoc Prof

one), the conditional test x < 10 is performed. If the outcome of this test is true,

the println() statement is executed, and then the iteration portion of the loop is

executed, which increases x by 1. This process continues until the conditional
test is false.

As a point of interest, in professionally written Java programs you will

almost never see the iteration portion of the loop written as shown in the
preceding program. That is, you will seldom see statements like this:

x = x + 1;

The reason is that Java includes a special increment operator which performs
this operation more efficiently. The increment operator is ++. (That is, two plus

signs back to back.) The increment operator increases its operand by one. By

use of the increment operator, the preceding statement can be written like this:

x++;

Thus, the for in the preceding program will usually be written like this:

for(x = 0; x<10; x++)

You might want to try this. As you will see, the loop still runs exactly the same
as it did before.

Java also provides a decrement operator, which is specified as – –. This
operator decreases its operand by one.

Using Blocks of Code
Java allows two or more statements to be grouped into blocks of code, also
called code blocks. This is done by enclosing the statements between opening
and closing curly braces. Once a block of code has been created, it becomes a
logical unit that can be used any place that a single statement can. For example,
a block can be a target for Java’s if and for statements. Consider this if
statement:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 99 Dr.Venkateswarulu, Assoc Prof

Here, if x is less than y, then both statements inside the block will be executed.

Thus, the two statements inside the block form a logical unit, and one statement
cannot execute without the other also executing. The key point here is that

whenever you need to logically link two or more statements, you do so by
creating a block.

Let’s look at another example. The following program uses a block of code
as the target of a for loop.

The output generated by this program is shown here:

This is x: 0

This is y: 20

This is x: 1

This is y: 18

This is x: 2

This is y: 16

This is x: 3

This is y: 14

This is x: 4

This is y: 12

This is x: 5

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 100 Dr.Venkateswarulu, Assoc Prof

This is y: 10

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 101 Dr.Venkateswarulu, Assoc Prof

This is x: 6

This is y: 8

This is x: 7

This is y: 6

This is x: 8

This is y: 4

This is x: 9

This is y: 2

In this case, the target of the for loop is a block of code and not just a single

statement. Thus, each time the loop iterates, the three statements inside the

block will be executed. This fact is, of course, evidenced by the output
generated by the program.

As you will see later in this book, blocks of code have additional properties
and uses. However, the main reason for their existence is to create logically
inseparable units of code.

Lexical Issues
Now that you have seen several short Java programs, it is time to more
formally describe the atomic elements of Java. Java programs are a collection

of whitespace, identifiers, literals, comments, operators, separators, and
keywords. The operators are described in the next chapter. The others are

described next.

Whitespace

Java is a free-form language. This means that you do not need to follow any
special indentation rules. For instance, the Example program could have been
written all on one line or in any other strange way you felt like typing it, as
long as there was at least one whitespace character between each token that was

not already delineated by an operator or separator. In Java, whitespace includes
a space, tab, newline, or form feed.

Identifiers

Identifiers are used to name things, such as classes, variables, and methods. An
identifier may be any descriptive sequence of uppercase and lowercase letters,
numbers, or the underscore and dollar-sign characters. (The dollar-sign

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 102 Dr.Venkateswarulu, Assoc Prof

character is not intended for general use.) They must not begin with a number,

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 103 Dr.Venkateswarulu, Assoc Prof

lest they be confused with a numeric literal. Again, Java is case-sensitive, so

VALUE is a different identifier than Value. Some examples of valid identifiers

are

Invalid identifier names include these:

NOTE Beginning with JDK 9, the underscore cannot be used by itself as an identifier.

Literals

A constant value in Java is created by using a literal representation of it. For
example, here are some literals:

Left to right, the first literal specifies an integer, the next is a floating-point
value, the third is a character constant, and the last is a string. A literal can be

used anywhere a value of its type is allowed.

Comments

As mentioned, there are three types of comments defined by Java. You have

already seen two: single-line and multiline. The third type is called a
documentation comment. This type of comment is used to produce an HTML
file that documents your program. The documentation comment begins with a
/** and ends with a */. Documentation comments are explained in Appendix A.

Separators

In Java, there are a few characters that are used as separators. The most
commonly used separator in Java is the semicolon. As you have seen, it is often

used to terminate statements. The separators are shown in the following table:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 104 Dr.Venkateswarulu, Assoc Prof

The Java Keywords

There are 61 keywords currently defined in the Java language (see Table 2-1).
These keywords, combined with the syntax of the operators and separators,

form the foundation of the Java language. In general, these keywords cannot be
used as identifiers, meaning that they cannot be used as names for a variable,
class, or method. The exceptions to this rule are the context-sensitive keywords
added by JDK 9 to support modules. (See Chapter 16 for details.) Also,
beginning with JDK 9, an underscore by itself is considered a keyword in order

to prevent its use as the name of something in your program.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 105 Dr.Venkateswarulu, Assoc Prof

Table 2-1 Java Keywords

The keywords const and goto are reserved but not used. In the early days
of Java, several other keywords were reserved for possible future use.
However, the current specification for Java defines only the keywords
shown in Table 2- 1.

In addition to the keywords, Java reserves four other names. Three have
been part of Java from the start: true, false, and null. These are values
defined by Java. You may not use these words for the names of variables,
classes, and so on. Beginning with JDK 10, the word var has been added as
a context- sensitive, reserved type name. (See Chapter 3 for more details on
var.)

The Java Class Libraries
The sample programs shown in this chapter make use of two of Java’s built-
in methods: println() and print(). As mentioned, these methods are
available through System.out.System is a class predefined by Java that is
automatically included in your programs. In the larger view, the Java
environment relies on several built-in class libraries that contain many
built-in methods that provide support for such things as I/O, string
handling, networking, and graphics. The standard classes also provide
support for a graphical user interface (GUI).

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 106 Dr.Venkateswarulu, Assoc Prof

Thus, Java as a totality is a combination of the Java language itself, plus its
standard classes. As you will see, the class libraries provide much of the
functionality that comes with Java. Indeed, part of becoming a Java

programmer is learning to use the standard Java classes. Throughout Part I of

this book, various elements of the standard library classes and methods are
described as needed. In Part II, several class libraries are described in detail.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 107 Dr.Venkateswarulu, Assoc Prof

CHAPTER

Data Types, Variables, and Arrays

This chapter examines three of Java’s most fundamental elements: data types,

variables, and arrays. As with all modern programming languages, Java

supports several types of data. You may use these types to declare variables
and to create arrays. As you will see, Java’s approach to these items is clean,
efficient, and cohesive.

Java Is a Strongly Typed Language
It is important to state at the outset that Java is a strongly typed language.
Indeed, part of Java’s safety and robustness comes from this fact. Let’s see

what this means. First, every variable has a type, every expression has a type,
and every type is strictly defined. Second, all assignments, whether explicit or
via parameter passing in method calls, are checked for type compatibility.

There are no automatic coercions or conversions of conflicting types as in some
languages. The Java compiler checks all expressions and parameters to ensure
that the types are compatible. Any type mismatches are errors that must be

corrected before the compiler will finish compiling the class.

The Primitive Types
Java defines eight primitive types of data: byte, short, int, long, char, float,
double, and boolean. The primitive types are also commonly referred to as
simple types, and both terms will be used in this book. These can be put in four
groups:

• Integers This group includes byte, short, int, and long, which are for
whole-valued signed numbers.

• Floating-point numbers This group includes float and double, which
represent numbers with fractional precision.

• Characters This group includes char, which represents symbols in a

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 108 Dr.Venkateswarulu, Assoc Prof

character set, like letters and numbers.

• Boolean This group includes boolean, which is a special type for

representing true/false values.

You can use these types as-is, or to construct arrays or your own class types.

Thus, they form the basis for all other types of data that you can create.

The primitive types represent single values—not complex objects. Although
Java is otherwise completely object-oriented, the primitive types are not. They

are analogous to the simple types found in most other non–object-oriented

languages. The reason for this is efficiency. Making the primitive types into

objects would have degraded performance too much.

The primitive types are defined to have an explicit range and mathematical

behavior. Languages such as C and C++ allow the size of an integer to vary

based upon the dictates of the execution environment. However, Java is
different. Because of Java’s portability requirement, all data types have a
strictly defined range. For example, an int is always 32 bits, regardless of the
particular platform. This allows programs to be written that are guaranteed to
run without porting on any machine architecture. While strictly specifying the
size of an integer may cause a small loss of performance in some

environments, it is necessary in order to achieve portability.

Let’s look at each type of data in turn.

Integers
Java defines four integer types: byte, short, int, and long. All of these are
signed, positive and negative values. Java does not support unsigned, positive-
only integers. Many other computer languages support both signed and
unsigned integers. However, Java’s designers felt that unsigned integers were
unnecessary. Specifically, they felt that the concept of unsigned was used
mostly to specify the behavior of the high-order bit, which defines the sign of
an integer value. As you will see in Chapter 4, Java manages the meaning of the
high-order bit differently, by adding a special “unsigned right shift” operator.
Thus, the need for an unsigned integer type was eliminated.

The width of an integer type should not be thought of as the amount of
storage it consumes, but rather as the behavior it defines for variables and
expressions of that type. The Java run-time environment is free to use whatever
size it wants, as long as the types behave as you declared them. The width and

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 109 Dr.Venkateswarulu, Assoc Prof

ranges of these integer types vary widely, as shown in this table:

Let’s look at each type of integer.

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range

from –128 to 127. Variables of type byte are especially useful when you’re
working with a stream of data from a network or file. They are also useful when
you’re working with raw binary data that may not be directly compatible with
Java’s other built-in types.

Byte variables are declared by use of the byte keyword. For example, the
following declares two byte variables called b and c:

byte b, c;

short

short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is
probably the least-used Java type. Here are some examples of short variable

declarations:

short s;

short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has
a range from –2,147,483,648 to 2,147,483,647. In addition to other uses,

variables of type int are commonly employed to control loops and to index
arrays. Although you might think that using a byte or short would be more
efficient than using an int in situations in which the larger range of an int is not

needed, this may not be the case. The reason is that when byte and short values

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 110 Dr.Venkateswarulu, Assoc Prof

are used in an expression, they are promoted to int when the expression is
evaluated. (Type promotion is described later in this chapter.) Therefore, int
isoften the best choice when an integer is needed.

long

long is a signed 64-bit type and is useful for those occasions where an int type

is not large enough to hold the desired value. The range of a long is quite large.

This makes it useful when big, whole numbers are needed. For example, here is
a program that computes the number of miles that light will travel in a

specified number of days:

This program generates the following output:

In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 111 Dr.Venkateswarulu, Assoc Prof

Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating
expressions that require fractional precision. For example, calculations such as

square root, or transcendentals such as sine and cosine, result in a value whose

precision requires a floating-point type. Java implements the standard (IEEE–
754) set of floating-point types and operators. There are two kinds of floating-

point types, float and double, which represent single- and double-precision

numbers, respectively. Their width and ranges are shown here:

Each of these floating-point types is examined next.

float

The type float specifies a single-precision value that uses 32 bits of storage.

Single precision is faster on some processors and takes half as much space as
double precision, but will become imprecise when the values are either very

large or very small. Variables of type float are useful when you need a
fractional component, but don’t require a large degree of precision. For

example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a
value. Double precision is actually faster than single precision on some modern
processors that have been optimized for high-speed mathematical calculations.
All transcendental math functions, such as sin(), cos(), and sqrt(), return
double values. When you need to maintain accuracy over many iterative
calculations, or are manipulating large-valued numbers, double is the best

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 112 Dr.Venkateswarulu, Assoc Prof

choice.

Here is a short program that uses double variables to compute the area of a
circle:

Characters
In Java, the data type used to store characters is char. A key point to

understand is that Java uses Unicode to represent characters. Unicode defines a
fully international character set that can represent all of the characters found in

all human languages. It is a unification of dozens of character sets, such as
Latin, Greek, Arabic, Cyrillic, Hebrew, Katakana, Hangul, and many more. At

the time of Java’s creation, Unicode required 16 bits. Thus, in Java char is a
16- bit type. The range of a char is 0 to 65,536. There are no negative chars.
The standard set of characters known as ASCII still ranges from 0 to 127 as
always, and the extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255.
Since Java is designed to allow programs to be written for worldwide use, it

makes sense that it would use Unicode to represent characters. Of course, the
use of Unicode is somewhat inefficient for languages such as English, German,
Spanish, or French, whose characters can easily be contained within 8 bits. But
such is the price that must be paid for global portability.

NOTE More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

http://www.unicode.org/

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 113 Dr.Venkateswarulu, Assoc Prof

This program displays the following output:

ch1 and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode)

value that corresponds to the letter X. As mentioned, the ASCII character set
occupies the first 127 values in the Unicode character set. For this reason, all
the “old tricks” that you may have used with characters in other languages will

work in Java, too.

Although char is designed to hold Unicode characters, it can also be used as
an integer type on which you can perform arithmetic operations. For example,
you can add two characters together, or increment the value of a character
variable. Consider the following program:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 114 Dr.Venkateswarulu, Assoc Prof

The output generated by this program is shown here:
ch1 contains X

ch1 is now Y

In the program, ch1 is first given the value X. Next, ch1 is incremented. This
results in ch1 containing Y, the next character in the ASCII (and Unicode)
sequence.

NOTE In the formal specification for Java, char is referred to as an integral type, which

means that it is in the same general category as int, short, long, and byte. However,

because its principal use is for representing Unicode characters, char is commonly

considered to be in a category of its own.

Booleans
Java has a primitive type, called boolean, for logical values. It can have only
one of two possible values, true or false. This is the type returned by all
relational operators, as in the case of a < b. boolean is also the type required by

the conditional expressions that govern the control statements such as if and
for.

Here is a program that demonstrates the boolean type:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 115 Dr.Venkateswarulu, Assoc Prof

The output generated by this program is shown here:

b is false

b is true

This is executed.

10 > 9 is true

There are three interesting things to notice about this program. First, as you
can see, when a boolean value is output by println(), "true" or "false" is
displayed. Second, the value of a boolean variable is sufficient, by itself, to

control the if statement. There is no need to write an if statement like this:

if(b == true) …

Third, the outcome of a relational operator, such as <, is a boolean value. This
is why the expression 10>9 displays the value "true." Further, the extra set of
parentheses around 10>9 is necessary because the + operator has a higher
precedence than the >.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 116 Dr.Venkateswarulu, Assoc Prof

A Closer Look at Literals
Literals were mentioned briefly in Chapter 2. Now that the built-in types have
been formally described, let’s take a closer look at them.

Integer Literals

Integers are probably the most commonly used type in the typical program.

Any whole number value is an integer literal. Examples are 1, 2, 3, and 42.

These are all decimal values, meaning they are describing a base 10 number.
Two other bases that can be used in integer literals are octal (base eight) and
hexadecimal (base 16). Octal values are denoted in Java by a leading zero.

Normal decimal numbers cannot have a leading zero. Thus, the seemingly valid
value 09 will produce an error from the compiler, since 9 is outside of octal’s 0
to 7 range. A more common base for numbers used by programmers is
hexadecimal, which matches cleanly with modulo 8 word sizes, such as 8, 16,
32, and 64 bits. You signify a hexadecimal constant with a leading zero-x, (0x
or 0X). The range of a hexadecimal digit is 0 to 15, so A through F (or a
through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value.

Since Java is strongly typed, you might be wondering how it is possible to
assign an integer literal to one of Java’s other integer types, such as byte or
long, without causing a type mismatch error. Fortunately, such situations are

easily handled. When a literal value is assigned to a byte or short variable, no
error is generated if the literal value is within the range of the target type. An
integer literal can always be assigned to a long variable. However, to specify a

long literal, you will need to explicitly tell the compiler that the literal value is
of type long. You do this by appending an upper- or lowercase L to the literal.
For example, 0x7ffffffffffffffL or 9223372036854775807L is the largest long.

An integer can also be assigned to a char as long as it is within range.

You can also specify integer literals using binary. To do so, prefix the value
with 0b or 0B. For example, this specifies the decimal value 10 using a binary
literal:

int x = 0b1010;

Among other uses, the addition of binary literals makes it easier to enter values

used as bitmasks. In such a case, the decimal (or hexadecimal) representation

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 117 Dr.Venkateswarulu, Assoc Prof

of the value does not visually convey its meaning relative to its use. The binary
literal does.

You can embed one or more underscores in an integer literal. Doing so

makes it easier to read large integer literals. When the literal is compiled, the
underscores are discarded. For example, given

int x = 123_456_789;

the value given to x will be 123,456,789. The underscores will be ignored.
Underscores can only be used to separate digits. They cannot come at the

beginning or the end of a literal. It is, however, permissible for more than one

underscore to be used between two digits. For example, this is valid:

int x = 123___456___789;

The use of underscores in an integer literal is especially useful when

encoding such things as telephone numbers, customer ID numbers, part
numbers, and so on. They are also useful for providing visual groupings when
specifying binary literals. For example, binary values are often visually

grouped in four-digits units, as shown here:

int x = 0b1101_0101_0001_1010;

Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component.
They can be expressed in either standard or scientific notation. Standard
notation consists of a whole number component followed by a decimal point
followed by a fractional component. For example, 2.0, 3.14159, and 0.6667
represent valid standard-notation floating-point numbers. Scientific notation
uses a standard-notation, floating-point number plus a suffix that specifies a
power of 10 by which the number is to be multiplied. The exponent is indicated

by an E or e followed by a decimal number, which can be positive or negative.
Examples include 6.022E23, 314159E–05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float
literal, you must append an F or f to the constant. You can also explicitly

specify a double literal by appending a D or d. Doing so is, of course,
redundant. The default double type consumes 64 bits of storage, while the
smaller float type requires only 32 bits.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 118 Dr.Venkateswarulu, Assoc Prof

Hexadecimal floating-point literals are also supported, but they are rarely
used. They must be in a form similar to scientific notation, but a P or p, rather
than an E or e, is used. For example, 0x12.2P2 is a valid floating-point literal.

The value following the P, called the binary exponent, indicates the power-of-

two by which the number is multiplied. Therefore, 0x12.2P2 represents 72.5.

You can embed one or more underscores in a floating-point literal. This
feature works the same as it does for integer literals, which were just described.
Its purpose is to make it easier to read large floating-point literals. When the

literal is compiled, the underscores are discarded. For example, given

double num = 9_423_497_862.0;

the value given to num will be 9,423,497,862.0. The underscores will be

ignored. As is the case with integer literals, underscores can only be used to
separate digits. They cannot come at the beginning or the end of a literal. It is,

however, permissible for more than one underscore to be used between two
digits. It is also permissible to use underscores in the fractional portion of the

number. For example,

double num = 9_423_497.1_0_9;

is legal. In this case, the fractional part is .109.

Boolean Literals

Boolean literals are simple. There are only two logical values that a boolean
value can have, true and false. The values of true and false do not convert into
any numerical representation. The true literal in Java does not equal 1, nor
does the false literal equal 0. In Java, the Boolean literals can only be assigned
to variables declared as boolean or used in expressions with Boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit
values that can be converted into integers and manipulated with the integer
operators, such as the addition and subtraction operators. A literal character is
represented inside a pair of single quotes. All of the visible ASCII characters
can be directly entered inside the quotes, such as 'a', 'z', and '@'. For characters
that are impossible to enter directly, there are several escape sequences that

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 119 Dr.Venkateswarulu, Assoc Prof

allow you to enter the character you need, such as ' \' ' for the single-quote
character itself and ' \n' for the newline character. There is also a mechanism
for directly entering the value of a character in octal or hexadecimal. For octal
notation, use the backslash followed by the three-digit number. For example, '

\141' is the letter 'a'. For hexadecimal, you enter a backslash-u (\u), then

exactly four hexadecimal digits. For example, ' \u0061' is the ISO-Latin-1 'a'
because the top byte is zero. ' \ua432 ' is a Japanese Katakana character.
Table 3-1 shows the character escape sequences.

Table 3-1 Character Escape Sequences

String Literals

String literals in Java are specified like they are in most other languages—by
enclosing a sequence of characters between a pair of double quotes.

Examples of string literals are

"Hello World"
"two\nlines"
" \"This is in quotes\""

The escape sequences and octal/hexadecimal notations that were defined for
character literals work the same way inside of string literals. One important
thing to note about Java strings is that they must begin and end on the same

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 120 Dr.Venkateswarulu, Assoc Prof

line. There is no line-continuation escape sequence as there is in some other
languages.

NOTE As you may know, in some other languages strings are implemented as arrays of

characters. However, this is not the case in Java. Strings are actually object types. As

you will see later in this book, because Java implements strings as objects, Java

includes extensive string-handling capabilities that are both powerful and easy to use.

Variables
The variable is the basic unit of storage in a Java program. A variable is

defined by the combination of an identifier, a type, and an optional initializer.
In addition, all variables have a scope, which defines their visibility, and a
lifetime. These elements are examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form
of a variable declaration is shown here:

type identifier [= value][, identifier [= value] …];

Here, type is one of Java’s atomic types, or the name of a class or interface.
(Class and interface types are discussed later in Part I of this book.) The

identifier is the name of the variable. You can initialize the variable by
specifying an equal sign and a value. Keep in mind that the initialization

expression must result in a value of the same (or compatible) type as that
specified for the variable. To declare more than one variable of the specified
type, use a comma-separated list.

Here are several examples of variable declarations of various types. Note
that some include an initialization.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 121 Dr.Venkateswarulu, Assoc Prof

The identifiers that you choose have nothing intrinsic in their names that
indicates their type. Java allows any properly formed identifier to have any
declared type.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java

allows variables to be initialized dynamically, using any expression valid at the
time the variable is declared.

For example, here is a short program that computes the length of the

hypotenuse of a right triangle given the lengths of its two opposing sides:

Here, three local variables—a, b, and c—are declared. The first two, a and b,

are initialized by constants. However, c is initialized dynamically to the length

of the hypotenuse (using the Pythagorean theorem). The program uses another
of Java’s built-in methods, sqrt(), which is a member of the Math class, to

compute the square root of its argument. The key point here is that the
initialization expression may use any element valid at the time of the

initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main()
method. However, Java allows variables to be declared within any block. As
explained in Chapter 2, a block is begun with an opening curly brace and ended
by a closing curly brace. A block defines a scope. Thus, each time you start a
new block, you are creating a new scope. A scope determines what objects are

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 122 Dr.Venkateswarulu, Assoc Prof

visible to other parts of your program. It also determines the lifetime of those
objects.

It is not uncommon to think in terms of two general categories of scopes:
global and local. However, these traditional scopes do not fit well with Java’s
strict, object-oriented model. While it is possible to create what amounts to
being a global scope, it is by far the exception, not the rule. In Java, the two
major scopes are those defined by a class and those defined by a method. Even

this distinction is somewhat artificial. However, since the class scope has

several unique properties and attributes that do not apply to the scope defined

by a method, this distinction makes some sense. Because of the differences, a

discussion of class scope (and variables declared within it) is deferred until
Chapter 6, when classes are described. For now, we will only examine the

scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace.

However, if that method has parameters, they too are included within the
method’s scope. A method’s scope ends with its closing curly brace. This block

of code is called the method body.

As a general rule, variables declared inside a scope are not visible (that is,
accessible) to code that is defined outside that scope. Thus, when you declare a

variable within a scope, you are localizing that variable and protecting it from
unauthorized access and/or modification. Indeed, the scope rules provide the
foundation for encapsulation. A variable declared within a block is called a

local variable.

Scopes can be nested. For example, each time you create a block of code,
you are creating a new, nested scope. When this occurs, the outer scope
encloses the inner scope. This means that objects declared in the outer scope

will be visible to code within the inner scope. However, the reverse is not true.
Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 123 Dr.Venkateswarulu, Assoc Prof

As the comments indicate, the variable x is declared at the start of main()’s

scope and is accessible to all subsequent code within main(). Within the if
block, y is declared. Since a block defines a scope, y is only visible to other
code within its block. This is why outside of its block, the line y = 100; is
commented out. If you remove the leading comment symbol, a compile-time
error will occur, because y is not visible outside of its block. Within the if
block, x can be used because code within a block (that is, a nested scope) has
access to variables declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only
after they are declared. Thus, if you define a variable at the start of a method, it
is available to all of the code within that method. Conversely, if you declare a
variable at the end of a block, it is effectively useless, because no code will
have access to it. For example, this fragment is invalid because count cannot be
used prior to its declaration:

// This fragment is wrong!

count = 100; // oops! cannot use count before it is declared!

int count;

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 124 Dr.Venkateswarulu, Assoc Prof

Here is another important point to remember: variables are created whe ntheir
scope is entered, and destroyed when their scope is left. This means that a
variable will not hold its value once it has gone out of scope. Therefore,
variables declared within a method will not hold their values between calls to

that method. Also, a variable declared within a block will lose its value when
the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be
reinitialized each time the block in which it is declared is entered. For example,

consider the next program:

The output generated by this program is shown here:

y is: -1

y is now: 100

y is: -1

y is now: 100

y is: -1

y is now: 100

As you can see, y is reinitialized to –1 each time the inner for loop is entered.

Even though it is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable
to have the same name as one in an outer scope. For example, the following
program is illegal:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 125 Dr.Venkateswarulu, Assoc Prof

Type Conversion and Casting
If you have previous programming experience, then you already know that it is
fairly common to assign a value of one type to a variable of another type. If the
two types are compatible, then Java will perform the conversion automatically.
For example, it is always possible to assign an int value to a long variable.
However, not all types are compatible, and thus, not all type conversions are

implicitly allowed. For instance, there is no automatic conversion defined from
double to byte. Fortunately, it is still possible to obtain a conversion between
incompatible types. To do so, you must use a cast, which performs an explicit

conversion between incompatible types. Let’s look at both automatic type
conversions and casting.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic
type conversion will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For

example, the int type is always large enough to hold all valid byte values, so no
explicit cast statement is required.

For widening conversions, the numeric types, including integer and
floating- point types, are compatible with each other. However, there are no
automatic conversions from the numeric types to char or boolean. Also, char
and boolean are not compatible with each other.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 126 Dr.Venkateswarulu, Assoc Prof

As mentioned earlier, Java also performs an automatic type conversion when

storing a literal integer constant into variables of type byte, short, long, or

char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all
needs. For example, what if you want to assign an int value to a byte variable?
This conversion will not be performed automatically, because a byte is smaller
than an int. This kind of conversion is sometimes called a narrowing

conversion, since you are explicitly making the value narrower so that it will fit
into the target type.

To create a conversion between two incompatible types, you must use a cast.

A cast is simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to.

For example, the following fragment casts an int to a byte. If the integer’s
value is larger than the range of a byte, it will be reduced modulo (the

remainder of an integer division by the) byte’s range.

int a;

byte b;

// …
b = (byte) a;

A different type of conversion will occur when a floating-point value is
assigned to an integer type: truncation. As you know, integers do not have
fractional components. Thus, when a floating-point value is assigned to an
integer type, the fractional component is lost. For example, if the value 1.23 is
assigned to an integer, the resulting value will simply be 1. The 0.23 will have
been truncated. Of course, if the size of the whole number component is too
large to fit into the target integer type, then that value will be reduced modulo
the target type’s range.

The following program demonstrates some type conversions that require
casts:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 127 Dr.Venkateswarulu, Assoc Prof

This program generates the following output:

Conversion of int to byte.

i and b 257 1

Conversion of double to int.

d and i 323.142 323

Conversion of double to byte.

d and b 323.142 67

Let’s look at each conversion. When the value 257 is cast into a byte variable,
the result is the remainder of the division of 257 by 256 (the range of a byte),
which is 1 in this case. When the d is converted to an int, its fractional
component is lost. When d is converted to a byte, its fractional component is
lost, and the value is reduced modulo 256, which in this case is 67.

Automatic Type Promotion in Expressions

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 128 Dr.Venkateswarulu, Assoc Prof

In addition to assignments, there is another place where certain type

conversions may occur: in expressions. To see why, consider the following. In

an expression, the precision required of an intermediate value will sometimes

exceed the range of either operand. For example, examine the following
expression:

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either
of its byte operands. To handle this kind of problem, Java automatically

promotes each byte, short, or char operand to int when evaluating an

expression. This means that the subexpression a*b is performed using integers
—not bytes. Thus, 2,000, the result of the intermediate expression, 50 * 40, is

legal even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing
compile-time errors. For example, this seemingly correct code causes a
problem:

byte b = 50;

b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into
a byte variable. However, because the operands were automatically promoted
to int when the expression was evaluated, the result has also been promoted to
int. Thus, the result of the expression is now of type int, which cannot be
assigned to a byte without the use of a cast. This is true even if, as in this
particular case, the value being assigned would still fit in the target type.

In cases where you understand the consequences of overflow, you should use
an explicit cast, such as

byte b = 50;

b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 129 Dr.Venkateswarulu, Assoc Prof

Java defines several type promotion rules that apply to expressions. They are as

follows: First, all byte, short, and char values are promoted to int, as just

described. Then, if one operand is a long, the whole expression is promoted to

long. If one operand is a float, the entire expression is promoted to float. If any
of the operands are double, the result is double.

The following program demonstrates how each value in the expression gets

promoted to match the second argument to each binary operator:

Let’s look closely at the type promotions that occur in this line from the
program:

double result = (f * b) + (i / c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the
subexpression is float. Next, in the subexpression i/c, c is promoted to int, and
the result is of type int. Then, in d * s, the value of s is promoted to double,
and the type of the subexpression is double. Finally, these three intermediate

values, float, int, and double, are considered. The outcome of float plus an int
is a float. Then the resultant float minus the last double is promoted to double,
which is the type for the final result of the expression.

Arrays
An array is a group of like-typed variables that are referred to by a common
name. Arrays of any type can be created and may have one or more dimensions.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 130 Dr.Venkateswarulu, Assoc Prof

A specific element in an array is accessed by its index. Arrays offer a

convenient means of grouping related information.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create

an array, you first must create an array variable of the desired type. The general
form of a one-dimensional array declaration is

type var-name[];

Here, type declares the element type (also called the base type) of the array.
The element type determines the data type of each element that comprises the

array. Thus, the element type for the array determines what type of data the

array will hold. For example, the following declares an array named
month_days with the type “array of int”:

int month_days[];

Although this declaration establishes the fact that month_days is an array
variable, no array actually exists. To link month_days with an actual, physical
array of integers, you must allocate one using new and assign it to

month_days. new is a special operator that allocates memory.

You will look more closely at new in a later chapter, but you need to use it
now to allocate memory for arrays. The general form of new as it applies to
one-dimensional arrays appears as follows:

array-var = new type [size];

Here, type specifies the type of data being allocated, size specifies the number
of elements in the array, and array-var is the array variable that is linked to the
array. That is, to use new to allocate an array, you must specify the type and

number of elements to allocate. The elements in the array allocated by new will
automatically be initialized to zero (for numeric types), false (for boolean), or
null (for reference types, which are described in a later chapter). This example

allocates a 12-element array of integers and links them to month_days:

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 131 Dr.Venkateswarulu, Assoc Prof

Further, all elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must

declare a variable of the desired array type. Second, you must allocate the

memory that will hold the array, using new, and assign it to the array variable.
Thus, in Java all arrays are dynamically allocated. If the concept of dynamic

allocation is unfamiliar to you, don’t worry. It will be described at length later
in this book.

Once you have allocated an array, you can access a specific element in the
array by specifying its index within square brackets. All array indexes start at

zero. For example, this statement assigns the value 28 to the second element of
month_days:

month_days[1] = 28;

The next line displays the value stored at index 3:

System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the
number of days in each month:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 132 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 133 Dr.Venkateswarulu, Assoc Prof

When you run this program, it prints the number of days in April. As

mentioned, Java array indexes start with zero, so the number of days in April
is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the
allocation of the array itself, as shown here:

int month_days[] = new int[12];

This is the way that you will normally see it done in professionally written
Java programs.

Arrays can be initialized when they are declared. The process is much the
same as that used to initialize the simple types. An array initializer is a list of

comma-separated expressions surrounded by curly braces. The commas
separate the values of the array elements. The array will automatically be
created large enough to hold the number of elements you specify in the array

initializer. There is no need to use new. For example, to store the number of
days in each month, the following code creates an initialized array of
integers:

When you run this program, you see the same output as that generated by the
previous version.

Java strictly checks to make sure you do not accidentally try to store or
reference values outside of the range of the array. The Java run-time system
will check that all array indexes are in the correct range. For example, the
run- time system will check the value of each index into month_days to
make sure that it is between 0 and 11 inclusive. If you try to access elements
outside the range of the array (negative numbers or numbers greater than the
length of the array), you will cause a run-time error.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 134 Dr.Venkateswarulu, Assoc Prof

Here is one more example that uses a one-dimensional array. It finds the
average of a set of numbers.

Multidimensional Arrays

In Java, multidimensional arrays are implemented as arrays of arrays. To
declare a multidimensional array variable, specify each additional index using

another set of square brackets. For example, the following declares a two-
dimensional array variable called twoD:

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally, this matrix is
implemented as an array of arrays of int. Conceptually, this array will look

like the one shown in Figure 3-1.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 135 Dr.Venkateswarulu, Assoc Prof

Figure 3-1 A conceptual view of a 4 by 5, two-dimensional array

The following program numbers each element in the array from left to right,
top to bottom, and then displays these values:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 136 Dr.Venkateswarulu, Assoc Prof

This program generates the following output:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

When you allocate memory for a multidimensional array, you need only

specify the memory for the first (leftmost) dimension. You can allocate the
remaining dimensions separately. For example, this following code allocates
memory for the first dimension of twoD when it is declared. It allocates the

second dimension separately.

int twoD[][] = new int[4][];

twoD[0] = new int[5];

twoD[1] = new int[5];

twoD[2] = new int[5];

twoD[3] = new int[5];

While there is no advantage to individually allocating the second dimension

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 137 Dr.Venkateswarulu, Assoc Prof

arrays in this situation, there may be in others. For example, when you allocate
dimensions individually, you do not need to allocate the same number of

elements for each dimension. As stated earlier, since multidimensional arrays

are actually arrays of arrays, the length of each array is under your control. For
example, the following program creates a two-dimensional array in which the

sizes of the second dimension are unequal:

This program generates the following output:

0

1 2

3 4 5

6 7 8 9

The array created by this program looks like this:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 138 Dr.Venkateswarulu, Assoc Prof

The use of uneven (or irregular) multidimensional arrays may not be

appropriate for many applications, because it runs contrary to what people
expect to find when a multidimensional array is encountered. However,
irregular arrays can be used effectively in some situations. For example, if you
need a very large two-dimensional array that is sparsely populated (that is, one
in which not all of the elements will be used), then an irregular array might be a
perfect solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose
each dimension’s initializer within its own set of curly braces. The following
program creates a matrix where each element contains the product of the row
and column indexes. Also notice that you can use expressions as well as literal
values inside of array initializers.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 139 Dr.Venkateswarulu, Assoc Prof

When you run this program, you will get the following output:

0.0 0.0 0.0 0.0

0.0 1.0 2.0 3.0

0.0 2.0 4.0 6.0

0.0 3.0 6.0 9.0

As you can see, each row in the array is initialized as specified in the

initialization lists.

Let’s look at one more example that uses a multidimensional array. The
following program creates a 3 by 4 by 5, three-dimensional array. It then loads
each element with the product of its indexes. Finally, it displays these products.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 140 Dr.Venkateswarulu, Assoc Prof

This program generates the following output:

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 2 3 4

0 2 4 6 8

0 3 6 9 12

0 0 0 0 0

0 2 4 6 8

0 4 8 12 16

0 6 12 18 24

Alternative Array Declaration Syntax

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 141 Dr.Venkateswarulu, Assoc Prof

There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the

array variable. For example, the following two declarations are equivalent:

int al[] = new int[3];

int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];

char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several
arrays at the same time. For example,

int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a
return type for a method. Both forms are used in this book.

Introducing Type Inference with Local

Variables
Recently, an exciting new feature called local variable type inference was
added to the Java language. To begin, let’s review two important aspects of

variables. First, all variables in Java must be declared prior to their use.
Second, a variable can be initialized with a value when it is declared.
Furthermore, when a variable is initialized, the type of the initializer must be

the same as (or convertible to) the declared type of the variable. Thus, in
principle, it would not be necessary to specify an explicit type for an initialized
variable because it could be inferred by the type of its initializer. Of course, in
the past, such inference was not supported, and all variables required an
explicitly declared type, whether they were initialized or not. Today, that

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 142 Dr.Venkateswarulu, Assoc Prof

situation has changed.

Beginning with JDK 10, it is now possible to let the compiler infer the type

of a local variable based on the type of its initializer, thus avoiding the need to

explicitly specify the type. Local variable type inference offers a number of
advantages. For example, it can streamline code by eliminating the need to

redundantly specify a variable’s type when it can be inferred from its
initializer. It can simplify declarations in cases in which the type name is quite

lengthy, such as can be the case with some class names. It can also be helpful

when a type is difficult to discern or cannot be denoted. (An example of a type

that cannot be denoted is the type of an anonymous class, discussed in Chapter
24.) Furthermore, local variable type inference has become a common part of

the contemporary programming environment. Its inclusion in Java helps keep

Java up-to-date with evolving trends in language design. To support local
variable type inference, the context-sensitive identifier var was added to Java

as a reserved type name.

To use local variable type inference, the variable must be declared with var
as the type name and it must include an initializer. For example, in the past you
would declare a local double variable called avg that is initialized with the

value 10.0, as shown here:

double avg = 10.0;

Using type inference, this declaration can now also be written like this:

var avg = 10.0;

In both cases, avg will be of type double. In the first case, its type is explicitly

specified. In the second, its type is inferred as double because the initializer

10.0 is of type double.

As mentioned, var was added as a context-sensitive identifier. When it is
used as the type name in the context of a local variable declaration, it tells the
compiler to use type inference to determine the type of the variable being
declared based on the type of the initializer. Thus, in a local variable
declaration, var is a placeholder for the actual, inferred type. However, when
used in most other places, var is simply a user-defined identifier with no
special meaning. For example, the following declaration is still valid:

int var = 1; // In this case, var is simply a user-defined

identifier.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 143 Dr.Venkateswarulu, Assoc Prof

In this case, the type is explicitly specified as int and var is the name of the
variable being declared. Even though it is a context-sensitive identifier, there

are a few places in which the use of var is illegal. It cannot be used as the name

of a class, for example.

The following program puts the preceding discussion into action:

Here is the output:

Value of avg: 10.0

Value of var: 1

Value of k: -1

The preceding example uses var to declare only simple variables, but you
can also use var to declare an array. For example:

var myArray = new int[10]; // This is valid.

Notice that neither var nor myArray has brackets. Instead, the type of

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 144 Dr.Venkateswarulu, Assoc Prof

myArray is inferred to be int[]. Furthermore, you cannot use brackets on the
left side of a var declaration. Thus, both of these declarations are invalid:

var[] myArray = new int[10]; // Wrong

var myArray[] = new int[10]; // Wrong

In the first line, an attempt is made to bracket var. In the second, an attempt is

made to bracket myArray. In both cases, the use of the brackets is wrong
because the type is inferred from the type of the initializer.

It is important to emphasize that var can be used to declare a variable only

when that variable is initialized. For example, the following statement is

incorrect:

var counter; // Wrong! Initializer required.

Also, remember that var can be used only to declare local variables. It cannot
be used when declaring instance variables, parameters, or return types, for
example.

Although the preceding discussion and examples have introduced the basics
of local variable type inference, they haven’t shown its full power. As you will
see in Chapter 7, local variable type inference is especially effective in
shortening declarations that involve long class names. It can also be used with
generic types (see Chapter 14), in a try-with-resources statement (see Chapter
13), and with a for loop (see Chapter 5).

Some var Restrictions

In addition to those mentioned in the preceding discussion, several other
restrictions apply to the use of var. Only one variable can be declared at a time;

a variable cannot use null as an initializer; and the variable being declared
cannot be used by the initializer expression. Although you can declare an array

type using var, you cannot use var with an array initializer. For example, this
is valid:

var myArray = new int[10]; // This is valid.

but this is not:

var myArray = { 1, 2, 3 }; // Wrong

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 145 Dr.Venkateswarulu, Assoc Prof

As mentioned earlier, var cannot be used as the name of a class. It also cannot
be used as the name of other reference types, including an interface,
enumeration, or annotation, or as the name of a generic type parameter, all of
which are described later in this book. Here are two other restrictions that
relateto Java features described in subsequent chapters but mentioned here in the

interest of completeness. Local variable type inference cannot be used to
declare the exception type caught by a catch statement. Also, neither lambda
expressions nor method references can be used as initializers.

NOTE At the time of this writing, local variable type inference is quite new, and many

readers of this book will be using Java environments that don’t support it. So that as

many of the code examples as possible will compile and run for all readers, local

variable type inference will not be used by most of the programs in the remainder of this

edition of the book. Using the full declaration syntax also makes it very clear at a

glance what type of variable is being created, which is important for the example code.

Of course, going forward, you should consider the use of local variable type inference

where appropriate in your own code.

A Few Words About Strings
As you may have noticed, in the preceding discussion of data types and arrays
there has been no mention of strings or a string data type. This is not because

Java does not support such a type—it does. It is just that Java’s string type,
called String, is not a primitive type. Nor is it simply an array of characters.
Rather, String defines an object, and a full description of it requires an
understanding of several object-related features. As such, it will be covered
later in this book, after objects are described. However, so that you can use
simple strings in example programs, the following brief introduction is in
order.

The String type is used to declare string variables. You can also declare
arrays of strings. A quoted string constant can be assigned to a String variable.

A variable of type String can be assigned to another variable of type String.
You can use an object of type String as an argument to println(). For example,
consider the following fragment:

String str = "this is a test";

System.out.println(str);

Here, str is an object of type String. It is assigned the string "this is a test".

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 146 Dr.Venkateswarulu, Assoc Prof

This string is displayed by the println() statement.

As you will see later, String objects have many special features and
attributes that make them quite powerful and easy to use. However, for the next
few chapters, you will be using them only in their simplest form.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 147 Dr.Venkateswarulu, Assoc Prof

CHAPTER

Operators

Java provides a rich operator environment. Most of its operators can be divided

into the following four groups: arithmetic, bitwise, relational, and logical. Java
also defines some additional operators that handle certain special situations.

This chapter describes all of Java’s operators except for the type

comparison operator instanceof, which is examined in Chapter 13 and the

arrow operator (−>), which is described in Chapter 15.

Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way
that they are used in algebra. The following table lists the arithmetic
operators:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 148 Dr.Venkateswarulu, Assoc Prof

The operands of the arithmetic operators must be of a numeric type. You

cannot use them on boolean types, but you can use them on char types, since

the char type in Java is, essentially, a subset of int.

The Basic Arithmetic Operators

The basic arithmetic operations—addition, subtraction, multiplication, and

division—all behave as you would expect for all numeric types. The unary
minus operator negates its single operand. The unary plus operator simply
returns the value of its operand. Remember that when the division operator is

applied to an integer type, there will be no fractional component attached to the

result.

The following simple example program demonstrates the arithmetic

operators. It also illustrates the difference between floating-point division and
integer division.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 149 Dr.Venkateswarulu, Assoc Prof

When you run this program, you will see the following output:

Integer Arithmetic

a = 2

b = 6

c = 1

d = -1

e = 1

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 150 Dr.Venkateswarulu, Assoc Prof

Floating Point Arithmetic

da = 2.0

db = 6.0

dc = 1.5

dd = -0.5

de = 0.5

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can
be applied to floating-point types as well as integer types. The following
example program demonstrates the %:

When you run this program, you will get the following output:

x mod 10 = 2

y mod 10 = 2.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic
operation with an assignment. As you probably know, statements like the
following are quite common in programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 151 Dr.Venkateswarulu, Assoc Prof

This version uses the += compound assignment operator. Both statements
perform the same action: they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

In this case, the %= obtains the remainder of a /2 and puts that result back into
a.

There are compound assignment operators for all of the arithmetic, binary
operators. Thus, any statement of the form

var = var op expression;

can be rewritten as

var op= expression;

The compound assignment operators provide two benefits. First, they save
you a bit of typing, because they are “shorthand” for their equivalent long
forms. Second, in some cases they are more efficient than are their equivalent
long forms. For these reasons, you will often see the compound assignment
operators used in professionally written Java programs.

Here is a sample program that shows several op= assignments in action:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 152 Dr.Venkateswarulu, Assoc Prof

The output of this program is shown here:

a = 6

b = 8

c = 3

Increment and Decrement

The ++ and the – – are Java’s increment and decrement operators. They were
introduced in Chapter 2. Here they will be discussed in detail. As you will see,
they have some special properties that make them quite interesting. Let’s begin
by reviewing precisely what the increment and decrement operators do.

The increment operator increases its operand by one. The decrement
operator decreases its operand by one. For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 153 Dr.Venkateswarulu, Assoc Prof

x = x - 1;

is equivalent to

x--;

These operators are unique in that they can appear both in postfix form,

where they follow the operand as just shown, and prefix form, where they
precede the operand. In the foregoing examples, there is no difference between
the prefix and postfix forms. However, when the increment and/or decrement

operators are part of a larger expression, then a subtle, yet powerful, difference

between these two forms appears. In the prefix form, the operand is
incremented or decremented before the value is obtained for use in the
expression. In postfix form, the previous value is obtained for use in the

expression, and then the operand is modified. For example:

x = 42;

y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs
before x is assigned to y. Thus, the line y = ++x; is the equivalent of these two
statements:

x = x + 1;

y = x;

However, when written like this,

x = 42;

y = x++;

the value of x is obtained before the increment operator is executed, so the
value of y is 42. Of course, in both cases x is set to 43. Here, the line y = x++; is

the equivalent of these two statements:

y = x;

x = x + 1;

The following program demonstrates the increment operator.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 154 Dr.Venkateswarulu, Assoc Prof

The output of this program follows:

a = 2

b = 3

c = 4

d = 1

The Bitwise Operators
Java defines several bitwise operators that can be applied to the integer types:

long, int, short, char, and byte. These operators act upon the individual bits of
their operands. They are summarized in the following table:

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 155 Dr.Venkateswarulu, Assoc Prof

Since the bitwise operators manipulate the bits within an integer: it is

important to understand what effects such manipulations may have on a value.
Specifically, it is useful to know how Java stores integer values and how it

represents negative numbers. So, before continuing, let’s briefly review these

two topics.

All of the integer types are represented by binary numbers of varying bit

widths. For example, the byte value for 42 in binary is 00101010, where each

position represents a power of two, starting with 20 at the rightmost bit. The

next bit position to the left would be 21, or 2, continuing toward the left with

22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits set at positions 1, 3, and 5

(counting from 0 at the right); thus, 42 is the sum of 21 + 23 + 25, which is 2 + 8

+ 32.

All of the integer types (except char) are signed integers. This means that
they can represent negative values as well as positive ones. Java uses an
encoding known as two’s complement, which means that negative numbers are

represented by inverting (changing 1’s to 0’s and vice versa) all of the bits in a

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 156 Dr.Venkateswarulu, Assoc Prof

value, then adding 1 to the result. For example, –42 is represented by inverting

all of the bits in 42, or 00101010, which yields 11010101, then adding 1, which

results in 11010110, or –42. To decode a negative number, first invert all of the
bits, then add 1. For example, –42, or 11010110 inverted, yields 00101001, or
41, so when you add 1 you get 42.

The reason Java (and most other computer languages) uses two’s

complement is easy to see when you consider the issue of zero crossing.
Assuming a byte value, zero is represented by 00000000. In one’s complement,
simply inverting all of the bits creates 11111111, which creates negative zero.
The trouble is that negative zero is invalid in integer math. This problem is

solved by using two’s complement to represent negative values. When using
two’s complement, 1 is added to the complement, producing 100000000. This
produces a 1 bit too far to the left to fit back into the byte value, resulting in
the desired behavior, where –0 is the same as 0, and 11111111 is the encoding
for –1. Although we used a byte value in the preceding example, the same basic
principle applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and

because all integers are signed values in Java—applying the bitwise operators
can easily produce unexpected results. For example, turning on the high-order

bit will cause the resulting value to be interpreted as a negative number,
whether this is what you intended or not. To avoid unpleasant surprises, just

remember that the high-order bit determines the sign of an integer no matter
how that high-order bit gets set.

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the
outcome of each operation. In the discussion that follows, keep in mind that the
bitwise operators are applied to each individual bit within each operand.

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 157 Dr.Venkateswarulu, Assoc Prof

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of

the bits of its operand. For example, the number 42, which has the following bit

pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is
produced in all other cases. Here is an example:

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands

is a 1, then the resultant bit is a 1, as shown here:

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then
the result is 1. Otherwise, the result is zero. The following example shows the
effect of the ^. This example also demonstrates a useful attribute of the XOR
operation. Notice how the bit pattern of 42 is inverted wherever the second

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 158 Dr.Venkateswarulu, Assoc Prof

operand has a 1 bit. Wherever the second operand has a 0 bit, the first operand
is unchanged. You will find this property useful when performing some types
of bit manipulations.

	About the Author
	About the Technical Editor
	Contents at a Glance
	Part I The Java Language
	Part II The Java Library
	Part IV Applying Java
	Part V Appendixes
	Index
	Chapter 1 The History and Evolution of Java
	Chapter 2 An Overview of Java
	Chapter 4 Operators
	Chapter 5 Control Statements
	Chapter 7 A Closer Look at Methods and Classes
	Chapter 8 Inheritance
	Chapter 9 Packages and Interfaces
	Chapter 10 Exception Handling
	Chapter 12 Enumerations, Autoboxing, and Annotations
	Chapter 13 I/O, Try-with-Resources, and Other Topics
	Chapter 14 Generics
	Chapter 15 Lambda Expressions
	Chapter 16 Modules
	Part II The Java Library
	Chapter 17 String Handling
	Chapter 18 Exploring java.lang
	Chapter 19 java.util Part 1: The Collections Framework
	Chapter 20 java.util Part 2: More Utility Classes
	Chapter 22 Exploring NIO
	Chapter 23 Networking
	Chapter 24 Event Handling
	Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text
	Chapter 26 Using AWT Controls, Layout Managers, and Menus
	Chapter 27 Images
	Chapter 28 The Concurrency Utilities
	Chapter 29 The Stream API
	Chapter 30 Regular Expressions and Other Packages

	Part III Introducing GUI Programming with Swing
	Chapter 31 Introducing Swing
	Chapter 32 Exploring Swing
	Chapter 33 Introducing Swing Menus

	Part IV Applying Java
	Chapter 34 Java Beans
	Chapter 35 Introducing Servlets

	Part V Appendixes
	Appendix A Using Java’s Documentation Comments
	Appendix B Introducing JShell
	Appendix C Compile and Run Simple Single-File Programs in One Step Index

	What’s Inside
	Special Thanks
	For Further Study
	PART
	CHAPTER 1
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11
	CHAPTER 12
	CHAPTER 13

	Java’s Lineage
	The Birth of Modern Programming: C
	C++: The Next Step
	The Stage Is Set for Java

	The Creation of Java
	The C# Connection

	How Java Impacted the Internet
	Java Applets
	Security
	Portability

	Java’s Magic: The Bytecode
	Moving Beyond Applets
	A Faster Release Schedule
	Servlets: Java on the Server Side
	The Java Buzzwords
	Simple
	Object-Oriented
	Robust
	Multithreaded
	Architecture-Neutral
	Interpreted and High Performance
	Distributed
	Dynamic

	The Evolution of Java
	A Culture of Innovation
	CHAPTER

	Object-Oriented Programming
	Two Paradigms
	Abstraction
	The Three OOP Principles
	Encapsulation
	Inheritance
	Polymorphism
	Polymorphism, Encapsulation, and Inheritance Work Together

	A First Simple Program
	Entering the Program
	Compiling the Program
	A Closer Look at the First Sample Program

	A Second Short Program
	Two Control Statements
	The if Statement
	The for Loop

	Using Blocks of Code
	Lexical Issues
	Whitespace
	Identifiers
	Literals
	Comments
	Separators
	The Java Keywords

	The Java Class Libraries
	CHAPTER

	Java Is a Strongly Typed Language
	The Primitive Types
	Integers
	byte
	short
	int
	long

	Floating-Point Types
	float
	double

	Characters
	Booleans
	A Closer Look at Literals
	Integer Literals
	Floating-Point Literals
	Boolean Literals
	Character Literals
	String Literals

	Variables
	Declaring a Variable
	Dynamic Initialization
	The Scope and Lifetime of Variables

	Type Conversion and Casting
	Java’s Automatic Conversions
	char.

	Automatic Type Promotion in Expressions
	The Type Promotion Rules

	Arrays
	One-Dimensional Arrays
	Multidimensional Arrays
	Alternative Array Declaration Syntax

	Introducing Type Inference with Local Variables
	Some var Restrictions

	A Few Words About Strings
	CHAPTER

	Arithmetic Operators
	The Basic Arithmetic Operators
	The Modulus Operator
	Arithmetic Compound Assignment Operators
	Increment and Decrement

	The Bitwise Operators
	The Bitwise Logical Operators
	The Bitwise NOT
	The Bitwise AND
	The Bitwise OR
	The Bitwise XOR

